首页 > 论文 > 激光与光电子学进展 > 54卷 > 4期(pp:40004--1)

波面干涉测量中的可变像差补偿技术

Variable Aberration Compensation Techniques in Wavefront Interferometry

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

以非球面为代表的复杂面形在现代光学系统中的应用越来越广泛,因为它比球面提供了更多的设计自由度,可用更少的元件达到更优的成像质量。然而非球面的多样性也带来了面形测量的难题,传统的零位测试没有灵活适应不同面形的能力。可变像差补偿技术对于提高检测柔性和效率具有重要意义。针对回转对称非球面的球差补偿,分析了部分补偿透镜、相位板组合和高次非球面单透镜等可变补偿方案;针对离轴非球面的像差补偿,分析了倾斜球面系统、Risley棱镜和双回转相位板的可变补偿方案;进而介绍了变形镜和空间光调制器(SLM)作为可编程补偿器用于波面干涉测量的研究进展。最后指出可变像差补偿技术面临的大范围和多模式像差补偿、回程误差补偿以及失调像差解耦三个主要问题。

Abstract

Complex surfaces typically including aspheres are more and more widely used in modern optical systems. Better imaging quality can be achieved with fewer elements because aspheres provide more design freedom. However, the variety of aspheres also introduces challenges to surface metrology. Conventional null tests do not have the flexibility to adapt to different shapes. Therefore variable aberration compensation techniques are important to enhance the flexibility and efficiency of testing. The analysis of partial null lens, combination of phase plates and high-order aspheric singlet for variable compensation schemes of spherical aberration of rotationally symmetric aspheres is presented. For aberration compensation of off-axis aspheres, the variable compensation schemes of tilted spherical mirror system, Risley prisms and the counter-rotating phase plates are analyzed. Furthermore, the progress of using deformable mirrors and spatial light modulators (SLM) as programmable compensators in wavefront interferometry is reviewed. Finally, three major problems in variable aberration compensation techniques are introduced, which are compensation of wide range and multiple modes of aberration, retrace error compensation and decoupling of misalignment-induced aberration.

投稿润色
补充资料

中图分类号:O436

DOI:10.3788/lop54.040004

所属栏目:综述

基金项目:国家自然科学基金(51375488)、湖南省自然科学杰出青年基金(2016JJ1003)

收稿日期:2016-11-17

修改稿日期:2016-12-06

网络出版日期:--

作者单位    点击查看

陈善勇:国防科学技术大学机电工程与自动化学院, 湖南 长沙 410073
卢劲丰:国防科学技术大学机电工程与自动化学院, 湖南 长沙 410073
薛帅:国防科学技术大学机电工程与自动化学院, 湖南 长沙 410073

联系人作者:陈善勇(mesychen@163.com)

备注:陈善勇(1980-),男,博士,研究员,主要从事光学检测与超精密测量方面的研究。

【1】Wilson R N. Astronomical optics[M]. San Diego: Academic Press, 2000: 115-154.

【2】Bociort F, Turnhout M V, Marinescu O E. Method of designing a projection system, lithographic apparatus and device manufacturing method: US, 7714307[P]. 2010-05-11.

【3】Mann H J. Six-mirror EUV projection system with low incidence angles: US, 7973908[P]. 2011-07-05.

【4】Wegner P, Auerbach J, Biesiada T, et al. NIF final optics system: frequency conversion and beam conditioning[C]. SPIE, 2004, 5341: 180-189.

【5】潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004.

【6】Goodwin E P, Wyant J C. Field guide to interferometric optical testing[C]. SPIE, 2004, FG10: 114.

【7】Faulde M, Fercher A F, Torge R, et al. Optical testing by means of synthetic holograms and partial lens compensation[J]. Optics Communications, 1973, 7(4): 363-365.

【8】Liu Huilan, Hao Qun, Zhu Qiudong, et al. Testing an aspheric surface using part-compensating lens[J]. Transactions of Beijing Institute of Technology, 2004, 24(7): 625-628.
刘惠兰, 郝 群, 朱秋东, 等. 利用部分补偿透镜进行非球面面形测量[J]. 北京理工大学学报, 2004, 24(7): 625-628.

【9】Meng Xiaochen, Hao Qun, Zhu Qiudong, et al. Optimization design of partially compensating lens based on Zemax[J]. Acta Optica Sinica, 2011, 31(6): 0622002.
孟晓辰, 郝 群, 朱秋东, 等. 基于Zemax的部分补偿透镜的优化设计[J]. 光学学报, 2011, 31(6): 0622002.

【10】Liu Dong, Yang Yongying, Tian Chao, et al. Partial null lens for general aspheric testing[J]. Infrared and Laser Engineering, 2009, 38(2): 322-325.
刘 东, 杨甬英, 田 超, 等. 用于非球面通用化检测的部分零位透镜[J]. 红外与激光工程, 2009, 38(2): 322-325.

【11】Luo Yongjie, Yang Yongying, Tian Chao, et al. Error analysis and processing of partial compensatory aspheric testing system[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(4): 636-642.
骆永洁, 杨甬英, 田 超, 等. 非球面部分补偿检测系统的误差分析与处理[J]. 浙江大学学报(工学版), 2012, 46(4): 636-642.

【12】Tian C, Yang Y Y, Zhuo Y M. Generalized data reduction approach for aspheric testing in a non-null interferometer[J]. Applied Optics, 2012, 51(10): 1598-1604.

【13】Zhang L, Tian C, Liu D, et al. Non-null annular subaperture stitching interferometry for steep aspheric measurement[J]. Applied Optics, 2014, 53(25): 5755-5762.

【14】杨甬英, 刘 东, 张 磊, 等. 一种高精度非球面组合干涉检测装置与方法: 中国, 201410012476.7[P]. 2014-05-07.

【15】Lowman A E. Calibration of a non-null interferometer for aspheric testing[D]. Tucson: University of Arizona, 1995.

【16】Greivenkamp J E, Gappinger R O. Design of a non-null interferometer for aspheric wavefronts[J]. Applied Optics, 2004, 43(27): 5143-5151.

【17】Sullivan J J, Greivenkamp J E. Design of partial nulls for testing of fast aspheric surfaces[C]. SPIE, 2007, 6671: 66710W.

【18】王孝坤, 闫 峰, 郑立功, 等. 部分补偿非球面反射镜面形检测方法: 中国, 201110334888.9[P]. 2012-06-20.

【19】Hilbert R S, Rimmer M P. A variable refractive null lens[J]. Applied Optics, 1970, 9(4): 849-852.

【20】Palusinski I A, Sasián J M, Greivenkamp J E. Lateral-shift variable aberration generators[J]. Applied Optics, 1999, 38(1): 86-90.

【21】Acosta E, Sasián J.Phase plates for generation of variable amounts of primary spherical aberration[J]. Optics Express, 2011, 19(14): 13171-13178.

【22】Sasián J, Acosta E. Generation of spherical aberration with axially translating phase plates via extrinsic aberration[J]. Optics Express, 2014, 22(1): 289-294.

【23】Lu J F, Chen S Y, Xue S. Variable aberration generator using a high-order even aspheric singlet for testing optical surfaces[C]. SPIE, 2016, 10155: 101550A.

【24】Shi Zhonghua, Yang Baoxi, Wei Zhangfan, et al. Research progress in optical spacing measurement technology[J]. Laser & Optoelectronics Progress, 2015, 52(4): 040004.

【25】Chen S Y, Zhao C Y, Dai Y F, et al. Reconfigurable optical null based on counterrotating Zernike plates for test of aspheres[J]. Optics Express, 2014, 22(2): 1381-1386.

【26】Chen S Y, Li S Y, Dai Y F. Subaperture stitching interferometry: jigsaw puzzles in 3D space[M]. SPIE Press, 2016.

【27】Chen S Y, Dai Y F, Li S Y, et al. Calculation of subaperture aspheric departure in lattice design for subaperture stitching interferometry[J]. Optical Engineering, 2010, 49(2): 023601.

【28】Küchel M F. Interferometric measurement of rotationally symmetric aspheric surfaces[C]. SPIE, 2009, 7389: 738916.

【29】Ostaszewski M, Harford S, Doughty N, et al. Risley prism beam pointer[C]. SPIE, 2006, 6304: 630406.

【30】Yang Y G. Analytic solution of free space optical beam steering using risley prisms[J]. Journal of Lightwave Technology, 2008, 26(21): 3576-3583.

【31】Jeon Y G. Generalization of the rst-order formula for analysis of scan patterns of Risley prisms[J]. Optical Engineering, 2011, 50(11): 113002.

【32】Li Y J. Closed form analytical inverse solutions for Risley-prism-based beam steering systems in different configurations[J]. Applied Optics, 2011, 50(22): 4302-4309.

【33】Li Y J. Third-order theory of the Risley-prism-based beam steering system[J]. Applied Optics, 2011, 50(5): 679-686.

【34】QED Technologies announces ASITM metrology system for aspheres[EB/OL]. (2009-01-12). http://www.qedmrf.com.

【35】Tricard M, Kulawiec A, Bauer M, et al. Subaperture stitching interferometry of high-departure aspheres by incorporating a variable optical null[J]. CIRP Annals - Manufacturing Technology, 2010, 59(1): 547-550.

【36】Supranowitz C, McFee C, Murphy P. Asphere metrology using variable optical null technology[C]. SPIE, 2012, 8416: 841604.

【37】Acosta E, Bará S. Variable aberration generators using rotated Zernike plates[J]. J Opt Soc Am A, 2005, 22(9): 1993-1996.

【38】Song Bing, Chen Shanyong, Wang Guilin. Subaperture testing technique of aspheres based on counter-rotating phase plates[J]. Acta Optica Sinica, 2013, 33(11):1112007.
宋 兵, 陈善勇, 王贵林. 基于双回转相位板的非球面子孔径测量技术[J]. 光学学报, 2013, 33(11): 1112007.

【39】Evans C J, Küchel C G, Parks R E, et al. Adaptive nulls for testing off-axis segments of aspherics: US, 20060268282[P]. 2006-11-30.

【40】Pruss C, Tiziani H J. Dynamic null lens for aspheric testing using a membrane mirror[J]. Optics Communications, 2004, 233(1-3): 15-19.

【41】Lu Yacong, Chen Linsen, Wei Guojun, et al. Laser direct writing system of fabricating high resolution image with DMD[J]. Laser Journal, 2007, 28(6): 46-47.
陆亚聪, 陈林森, 魏国军, 等. 基于DMD高分辨率激光直写系统设计与实现[J]. 激光杂志, 2007, 28(6): 46-47.

【42】Luo Ningning. Study on digital mask fabrication technique for micro-optical elements[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 12-13.
罗宁宁. 微光学器件数字掩模制作技术的研究[D]. 南京: 南京航空航天大学, 2012: 12-13.

【43】Collings N, Davey T, Christmas J, et al. The applications and technology of phase-only liquid crystal on silicon devices[J]. Journal of Display Technology, 2011, 7(3): 112-119.

【44】Love G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator[J]. Applied Optics, 1997, 36(7): 1517-1524.

【45】Hu L F, Xuan L, Liu Y J, et al. Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision[J]. Optics Express, 2004, 12(26): 6403-6409.

【46】Kacperski J, Kujawinska M. Active, LCoS based laser interferometer for microelements studies[J]. Optics Express, 2006, 14(21): 9664-9678.

【47】Arines J, Durán V, Jaroszewicz Z, et al. Measurement and compensation of optical aberrations using a single spatial light modulator[J]. Optics Express, 2007, 15(23): 15287-15292.

【48】Fernández E J, Prieto P M, Artal P.Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator[J]. Optics Express, 2009, 17(13): 11013-11025.

【49】Cao Z L, Xuan L, Hu L F, et al. Investigation of optical testing with a phase-only liquid crystal spatial light modulator[J]. Optics Express, 2005, 13(4): 1059-1065.

【50】Ares M, Royo S, Sergievskaya I, et al. Active optics null test system based on a liquid crystal programmable spatial light modulator[J]. Applied Opitcs, 2010, 49(32): 6201-6206.

【51】Jo J S, Trolinger J D, Lal A, et al. Practical issues in applying a programmable holographic optical element for optical metrology[C]. Mirror Technology SBIR/STTR Workshop, 2009.

【52】Liu D, Shi T, Zhang L, et al. Reverse optimization reconstruction of aspheric figure error in a non-null interferometer[J]. Applied Optics, 2014, 53(24): 5538-5546.

【53】Chen Xindong, Li Ruigang. Research on geometric parameter measurement method using laser tracker in null lens asphere testing[J]. Chinese J Lasers, 2015, 42(5): 0508007.
陈新东, 李锐刚. 基于双回转相位板的非球面子孔径测量技术[J]. 中国激光, 2015, 42(5): 0508007.

【54】Quan Haiyang, Hou Xi, Wu Fan. Research status and progress of measurement uncertainty in interferometric testing of surface figure[J]. Laser & Optoelectronics Progress, 2015, 52(6): 060004.
全海洋, 侯 溪, 伍 凡. 测量不确定度在干涉面形检测领域的研究现状及进展[J]. 激光与光电子学进展, 2015, 52(6): 060004.

引用该论文

Chen Shanyong,Lu Jinfeng,Xue Shuai. Variable Aberration Compensation Techniques in Wavefront Interferometry[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040004

陈善勇,卢劲丰,薛帅. 波面干涉测量中的可变像差补偿技术[J]. 激光与光电子学进展, 2017, 54(4): 040004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF