首页 > 论文 > 激光与光电子学进展 > 55卷 > 9期(pp:91603--1)

P掺杂对二维SiC光电特性调制的机理

Modulation Mechanism of P-Doping on Photoelectric Properties of Two-Dimensional SiC

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于第一性原理, 对不同P原子掺杂浓度的二维SiC的几何结构、电子结构和光学性质进行了研究。结果表明:随着P掺杂浓度的增加, P掺杂二维SiC的晶格常数变小, 带隙减小; 价带主要由C-2p, Si-3p和P-3p态电子杂化构成, 导带主要由Si-3p态电子构成。P削弱了C—Si键的共价性, 增加了离子性。P掺杂扩大了二维SiC的光吸收范围, 吸收系数和折射率随掺杂浓度的增加而增大, 表明P掺杂能有效提高二维SiC对可见光和红外光的吸收。

Abstract

The geometrical structures, electronic structures and optical properties of the two-dimensional (2D) SiC doped with P with different concentrations are investigated by the first principle method. The results show that, the lattice constant and the bandgap of 2D SiC doped with P gradually decrease with the increase of P doping concentration. The valence band is mainly composed of the hybridization of the electrons of C-2p, Si-3p and P-3p states, while the conduction band is mainly composed of the electrons of Si-3p state. The P doping weakens the covalency and increases the ionic property for the C—Si bond. The P doping expands the optical absorption range of 2D SiC, and makes the absorption coefficient and the refractive index increase with the increase of doping concentration, which indicates that P doping can effectively improve the absorption for both the visible and infrared light.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O474

DOI:10.3788/lop55.091603

所属栏目:材料

基金项目:贵州省科学技术基金(黔科合J字[2015]2001)、安顺学院博士基金(Asxybsjj201503)、安顺学院创新人才团队(2015PT02)

收稿日期:2018-02-11

修改稿日期:2018-04-04

网络出版日期:2018-04-09

作者单位    点击查看

闫万珺:安顺学院电子与信息工程学院, 贵州 安顺 561000安顺学院航空电子电气与信息网络工程中心, 贵州 安顺 561000
张春红:安顺学院电子与信息工程学院, 贵州 安顺 561000安顺学院航空电子电气与信息网络工程中心, 贵州 安顺 561000
覃信茂:安顺学院电子与信息工程学院, 贵州 安顺 561000安顺学院航空电子电气与信息网络工程中心, 贵州 安顺 561000
张忠政:安顺学院电子与信息工程学院, 贵州 安顺 561000安顺学院航空电子电气与信息网络工程中心, 贵州 安顺 561000
周士芸:安顺学院电子与信息工程学院, 贵州 安顺 561000安顺学院航空电子电气与信息网络工程中心, 贵州 安顺 561000

联系人作者:闫万珺(yanwanjun7817@163.com)

【1】Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

【2】Coleman J N, Lotya M, O′Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.

【3】Zeng Z, Yin Z, Huang X, et al. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication[J]. Angewandte Chemie International Edition, 2011, 50(47): 11093-11097.

【4】Zhang Z H, Guo W L. Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations[J]. Physical Review B, 2008, 77(7): 075403.

【5】Liu H, Neal A T, Zhu Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.

【6】Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.

【7】Chen S J, Liu Y C, Shao C L, et al. Structural and optical properties of uniform ZnO nanosheets[J]. Advanced Materials, 2005, 17(5): 586-590.

【8】ahin H, Cahangirov S, Topsakal M, et al. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations[J]. Physical Review B, 2009, 80(15): 155453.

【9】Shi Z, Zhang Z, Kutana A, et al. Predicting two-dimensional silicon carbide monolayers[J]. ACS Nano, 2015, 9(10): 9802-9809.

【10】Yan W J, Xie Q, Qin X M, et al. First-principle analysis of photoelectric properties of silicon-carbon materials with graphene-like honeycomb structure[J]. Computational Materials Science, 2017, 126: 336-343.

【11】Chabi S, Chang H, Xia Y, et al. From graphene to silicon carbide: Ultrathin silicon carbide flakes[J]. Nanotechnology, 2016, 27(7): 075602.

【12】Cui H W, Zhang F C, Shao T T.First-principles study of electronic structure and optical properties of Sn-doped ZnO[J]. Acta Optica Sinica, 2016, 36(7): 0716002.
崔红卫, 张富春, 邵婷婷. Sn掺杂ZnO电子结构与光学性质的第一性原理研究[J]. 光学学报, 2016, 36(7): 0716002.

【13】Ma W K, Wu J J, Zhang G F, et al. First-principle study of electronic structure and optical property of Cu/Co doped FeS2[J]. Acta Optica Sinica, 2016, 36(10): 1016001.
马万坤, 武佳佳, 张国范, 等. Cu/Co 掺杂FeS2电子结构及光学性质的第一性原理研究[J]. 光学学报, 2016, 36(10): 1016001.

【14】Li X, Fan M H, Yang Y F, et al. First-principles study on optical properties of N-Co co-doped anatase TiO2[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121604.
李鑫, 范梦慧, 杨云飞, 等. N-Co共掺锐钛矿相TiO2光学性质的第一性原理研究[J]. 激光与光电子学进展, 2017, 54(12): 121604.

【15】Zeng F J, Tan Y Q, Yu Y S, et al. Electronic structure and optical property of Ag-Ce co-doped anatase TiO2[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071601.
曾凡菊, 谭永前, 余幼胜, 等. Ag-Ce共掺杂锐钛矿型TiO2的电子结构与光学性质[J]. 激光与光电子学进展, 2017, 54(7): 071601.

【16】Zeng F J, Tan Y Q, Liang D M, et al. Study on first-principle of Ce/S co-doped anatase TiO2[J]. Laser & Optoelectronics Progress, 2016, 53(6): 061601.
曾凡菊, 谭永前, 梁冬梅, 等. Ce/S共掺杂锐钛矿型TiO2的第一性原理研究[J]. 激光与光电子学进展, 2016, 53(6): 061601.

【17】Shi R Q, Wu Y, Liu H, et al. First-principles calculations of P doped 4H-SiC supercell[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(6): 1617-1624.
史茹倩, 吴一, 刘红, 等. P掺杂4H-SiC超晶胞的第一性原理计算[J]. 中国有色金属学报, 2015, 25(6): 1617-1624.

【18】Cen W F, Yang Y Y, Fan M H, et al. Electronic structure and optical properties of orthorhombic P-doped Ca2Si calculated by the first-principles[J]. Acta Photonica Sinica, 2014, 43(8): 0816003.
岑伟富, 杨吟野, 范梦慧, 等. P掺杂正交相Ca2Si电子结构及光学性质的第一性原理计算[J]. 光子学报, 2014, 43(8): 0816003.

【19】Zheng S K, Wu G H, Liu L. First-principles calculations of P-doped anatase TiO2[J]. Acta Physica Sinica, 2013, 62(4): 043102.
郑树凯, 吴国浩, 刘磊. P掺杂锐钛矿相TiO2的第一性原理计算[J]. 物理学报, 2013, 62(4): 043102.

【20】Chen Z R, Xu Y H, He Z R. The structure, spectrum and electrical properties of phosphorus-doped graphene[J]. Journal of Sichuan University (Natural Science Edition), 2016, 53(3): 587-590.
陈自然, 徐友辉, 何展荣. 磷掺杂石墨烯的结构、光谱及电学性质[J]. 四川大学学报(自然科学版), 2016, 53(3): 587-590.

【21】Segall M D, Lindan P J, Probert M A, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717.

【22】Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865.

【23】Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892.

【24】Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188.

【25】Broyden C G. The convergence of a class of double-rank minimization algorithms: The new algorithm[J]. Journal of the Institute for Mathematics and Applications, 1970, 6: 222.

【26】Fletcher R. A new approach to variable metric algorithms[J]. The Computer Journal, 1970, 13(3): 317-322.

【27】Goldfarb D. A family of variable metric methods derived by variational means[J]. Mathematics of Computation, 1970, 24(109): 23-26.

【28】Shanno D F. Conditioning of quasi-Newton methods for function minimization[J]. Mathematics of Computation, 1970, 24 (111): 647-656.

【29】Yu Z Z, Hu M L, Zhang C X, et al. Transport properties of hybrid zigzag graphene and boron nitride nanoribbons[J]. The Journal of Physical Chemistry C, 2011, 115: 10836-10841.

【30】Zhou Y G, Yang P, Wang Z G, et al. Functionalized graphene nanoroads for quantum well device[J]. Applied Physics Letters, 2011, 98(9): 093108.

【31】Huda M N, Yan Y, Al-Jassim M M. On the existence of Si-C double bonded graphene-like layers[J]. Chemical Physics Letters, 2009, 479(4/6): 255-258.

【32】Fang R C. Solid state spectroscopy[M]. Hefei: University of Science and Technology of China Press, 2003: 55.
方容川. 固体光谱学[M]. 合肥: 中国科学技术大学出版社, 2003: 55.

引用该论文

Yan Wanjun,Zhang Chunhong,Qin Xinmao,Zhang Zhongzheng,Zhou Shiyun. Modulation Mechanism of P-Doping on Photoelectric Properties of Two-Dimensional SiC[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091603

闫万珺,张春红,覃信茂,张忠政,周士芸. P掺杂对二维SiC光电特性调制的机理[J]. 激光与光电子学进展, 2018, 55(9): 091603

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF