首页 > 论文 > Photonics Research > 6卷 > 10期(pp:971-980)

Passively Q-switched femtosecond-laser-written thulium waveguide laser based on evanescent field interaction with carbon nanotubes

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Surface channel waveguides (WGs) were fabricated in a monoclinic Tm3+:KLu(WO4)2 crystal by femtosecond direct laser writing (fs-DLW). The WGs consisted of a half-ring cladding with diameters of 50 and 60 μm located just beneath the crystal surface. They were characterized by confocal laser microscopy and μ-Raman spectroscopy, indicating a reduced crystallinity and stress-induced birefringence of the WG cladding. In continuous-wave (CW) mode, under Ti:sapphire laser pumping at 802 nm, the maximum output power reached 171.1 mW at 1847.4 nm, corresponding to a slope efficiency η of 37.8% for the 60 μm diameter WG. The WG propagation loss was 0.7±0.3 dB/cm. The top surface of the WGs was spin-coated by a polymethyl methacrylate film containing randomly oriented (spaghetti-like) arc-discharge single-walled carbon nanotubes serving as a saturable absorber based on evanescent field coupling. Stable passively Q-switched (PQS) operation was achieved. The PQS 60 μm diameter WG laser generated a record output power of 150 mW at 1846.8 nm with η=34.6%. The conversion efficiency with respect to the CW mode was 87.6%. The best pulse characteristics (energy/duration) were 105.6 nJ/98 ns at a repetition rate of 1.42 MHz.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.6.000971

所属栏目:Lasers and laser optics

基金项目:Ministerio de Economía y Competitividad (MINECO)10.13039/501100003329 (FIS2013-44174-P, FIS2015-71933-REDT, MAT2016-75716-C2-1-R (AEI/FEDER,UE), TEC2014-55948-R); Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR)10.13039/501100003030 (2017SGR755); Consejería de Educación, Junta de Castilla y León10.13039/501100008431 (SA046U16, UIC016); Generalitat de Catalunya10.13039/501100002809 (2016FI_B00844, 2017FI_B100158, 2018 FI_B2 00123).

收稿日期:2018-06-29

录用日期:2018-07-17

网络出版日期:2018-07-17

作者单位    点击查看

Esrom Kifle:Universitat Rovira i Virgili, Departament Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007 Tarragona, Spain
Pavel Loiko:ITMO University, 49 Kronverkskiy pr., 197101 St. Petersburg, Russia
Javier Rodríguez Vázquez de Aldana:Aplicaciones del Láser y Fotónica, University of Salamanca, 37008 Salamanca, Spain
Carolina Romero:Aplicaciones del Láser y Fotónica, University of Salamanca, 37008 Salamanca, Spain
Airán Ródenas:Universitat Rovira i Virgili, Departament Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007 Tarragona, SpainIstituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
Sun Yung Choi:Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, 34141 Daejeon, South Korea
Ji Eun Bae:Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, 34141 Daejeon, South Korea
Fabian Rotermund:Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, 34141 Daejeon, South Korea
Viktor Zakharov:ITMO University, 49 Kronverkskiy pr., 197101 St. Petersburg, Russia
Andrey Veniaminov:ITMO University, 49 Kronverkskiy pr., 197101 St. Petersburg, Russia
Magdalena Aguiló:Universitat Rovira i Virgili, Departament Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007 Tarragona, Spain
Francesc Díaz:Universitat Rovira i Virgili, Departament Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007 Tarragona, Spain
Uwe Griebner:Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, D-12489 Berlin, Germany
Valentin Petrov:Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, D-12489 Berlin, Germany
Xavier Mateos:Universitat Rovira i Virgili, Departament Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007 Tarragona, Spain

联系人作者:Xavier Mateos(xavier.mateos@urv.cat)

【1】R. C. Stoneman, and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15 , 486–488 (1990).

【2】P. Loiko, and M. Pollnau, “Stochastic model of energy-transfer processes among rare-earth ions. Example of Al2O3:Tm3+,” J. Phys. Chem. C 120 , 26480–26489 (2016).

【3】K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6??W of output power and ~80% slope efficiency,” Opt. Lett. 39 , 4380–4383 (2014).

【4】W. Bola?os, J. J. Carvajal, M. C. Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9 , 3525–3531 (2009).

【5】K. van Dalfsen, S. Aravazhi, D. Geskus, K. W?rhoff, and M. Pollnau, “Efficient KY1-x-yGdxLuy(WO4)2:Tm3+ channel waveguide lasers,” Opt. Express 19 , 5277–5282 (2011).

【6】V. Petrov, M. C. Pujol, X. Mateos, ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. H. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1 , 179–212 (2007).

【7】K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21 , 1729–1731 (1996).

【8】S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29 , 2626–2628 (2004).

【9】M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3 , 535–544 (2009).

【10】Y. Jia, C. Cheng, J. R. Vázquez de Aldana, G. R. Castillo, B. del Rosal Rabes, Y. Tan, D. Jaque, and F. Chen, “Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes,” Sci. Rep. 4 , 5988 (2014).

【11】J. A. Grant-Jacob, S. J. Beecher, T. L. Parsonage, P. Hua, J. I. Mackenzie, D. P. Shepherd, and R. W. Eason, “An 11.5??W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition,” Opt. Mater. Express 6 , 91–96 (2016).

【12】D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36 , 1587–1589 (2011).

【13】F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. A. Brown, “Lasing action at around 1.9??μm from an ultrafast laser inscribed Tm-doped glass waveguide,” Opt. Lett. 36 , 1566–1568 (2011).

【14】D. G. Lancaster, S. Gross, M. J. Withford, and T. M. Monro, “Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers,” Opt. Express 22 , 25286–25294 (2014).

【15】Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37 , 3339–3341 (2012).

【16】D. G. Lancaster, S. Gross, A. Fuerbach, H. Ebendorff Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20 , 27503–27509 (2012).

【17】J. Morris, N. K. Stevenson, H. T. Bookey, A. K. Kar, C. T. A. Brown, J.-M. Hopkins, M. D. Dawson, and A. A. Lagatsky, “1.9??μm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic,” Opt. Express 25 , 14910–14917 (2017).

【18】E. Kifle, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42 , 1169–1172 (2017).

【19】E. Kifle, P. Loiko, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: μ-Raman study and laser operation,” Opt. Mater. Express 7 , 4258–4268 (2017).

【20】Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19 , 3077–3083 (2009).

【21】J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23 , 14108–14113 (2015).

【22】W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20 , 1937–1943 (2010).

【23】H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22 , 7249–7260 (2014).

【24】J. M. Serres, P. Loiko, X. Mateos, H. Yu, H. Zhang, Y. Chen, V. Petrov, U. Griebner, K. Yumashev, M. Aguiló, and F. Díaz, “MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers,” Opt. Mater. Express 6 , 3262–3273 (2016).

【25】P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5 , 8690 (2015).

【26】P. Loiko, J. Bogus?awski, J. M. Serres, E. Kifle, M. Kowalczyk, X. Mateos, J. Sotor, R. Zyba?a, K. Mars, A. Miku?a, K. Kaszyca, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Sb2Te3 thin film for the passive Q-switching of a Tm:GdVO4 laser,” Opt. Mater. Express 8 , 1723–1732 (2018).

【27】Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, and G. R. Lin, “Using n-and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers,” ACS Photon. 2 , 481–490 (2015).

【28】J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40 , 3885–3888 (2015).

【29】J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3 , 119–124 (2015).

【30】G. R. Lin, and Y. C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8 , 880–886 (2011).

【31】X. Mateos, P. Loiko, S. Y. Choi, F. Rotermund, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2??μm,” Laser Phys. Lett. 14 , 095801 (2017).

【32】P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131??nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33 , D19–D27 (2016).

【33】W. Bola?os, J. J. Carvajal, X. Mateos, E. Cantelar, G. Lifante, U. Griebner, V. Petrov, V. L. Panyutin, G. S. Murugan, J. S. Wilkinson, M. Aguiló, and F. Díaz, “Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84??μm,” Opt. Express 19 , 1449–1454 (2011).

【34】Y. Ren, G. Brown, R. Mary, G. Demetriou, D. Popa, F. Torrisi, A. C. Ferrari, F. Chen, and A. K. Kar, “7.8-GHz graphene-based 2-μm monolithic waveguide laser,” IEEE J. Sel. Top. Quantum Electron. 21 , 395–400 (2015).

【35】E. Kifle, X. Mateos, P. Loiko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Graphene Q-switched Tm:KY(WO4)2 waveguide laser,” Laser Phys. 27 , 045801 (2017).

【36】J. H. Lee, S. Gross, B. V. Cunning, C. L. Brown, D. Kielpinski, T. M. Monro, and D. G. Lancaster, “Graphene-based passive Q-switching of a Tm3+:ZBLAN short-infrared waveguide laser,” in Conference on Lasers and Electro-Optics (CLEO) , San Jose, California, June8–13, 2014, paper JTu4A.128.

【37】X. Jiang, S. Gross, H. Zhang, Z. Guo, M. J. Withford, and A. Fuerbach, “Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers,” Ann. Phys. 528 , 543–550 (2016).

【38】J. W. Kim, S. Y. Choi, D.-I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, and F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38 , 5090–5093 (2013).

【39】Y. Tan, R. He, J. Macdonald, A. K. Kar, and F. Chen, “Q-switched Nd:YAG channel waveguide laser through evanescent field interaction with surface coated graphene,” Appl. Phys. Lett. 105 , 101111 (2014).

【40】A. Choudhary, S. J. Beecher, S. Dhingra, B. D’Urso, T. L. Parsonage, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, R. W. Eason, and D. P. Shepherd, “456-mW graphene Q-switched Yb:yttria waveguide laser by evanescent-field interaction,” Opt. Lett. 40 , 1912–1915 (2015).

【41】J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, “Graphene Q-switched Yb:KYW planar waveguide laser,” AIP Adv. 5 , 017110 (2015).

【42】H. Liu, C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides,” Opt. Express 23 , 9730–9735 (2015).

【43】Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express 21 , 16763–16776 (2013).

【44】J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, Y. Chen, S. Wen, and H. Zhang, “Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction,” Sci. Rep. 4 , 6346 (2014).

【45】J. M. Serres, X. Mateos, P. Loiko, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Diode-pumped microchip Tm:KLu(WO4)2 laser with more than 3??W of output power,” Opt. Lett. 39 , 4247–4250 (2014).

【46】H.-D. Nguyen, A. Ródenas, J. R. Vázquez de Aldana, J. Martínez, F. Chen, M. Aguiló, M. C. Pujol, and F. Díaz, “Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides,” Opt. Express 24 , 7777–7791 (2016).

【47】W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2??μm using a carbon nanotube saturable absorber,” Opt. Express 17 , 11007–11012 (2009).

【48】X. Mateos, P. Loiko, J. M. Serres, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Efficient micro-lasers based on highly-doped monoclinic double tungstates,” IEEE J. Quantum Electron. 53 , 1700110 (2017).

【49】F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17 , 22417–22422 (2009).

【50】A. S. Yasukevich, P. Loiko, N. V. Gusakova, J. M. Serres, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Modeling of graphene Q-switched Tm lasers,” Opt. Commun. 389 , 15–22 (2017).

【51】G. Li, H. Li, R. Gong, Y. Tan, J. R. Vázquez de Aldana, Y. Sun, and F. Chen, “Intracavity biosensor based on the Nd:YAG waveguide laser: tumor cells and dextrose solutions,” Photon. Res. 5 , 728–732 (2017).

引用该论文

Esrom Kifle, Pavel Loiko, Javier Rodríguez Vázquez de Aldana, Carolina Romero, Airán Ródenas, Sun Yung Choi, Ji Eun Bae, Fabian Rotermund, Viktor Zakharov, Andrey Veniaminov, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, Valentin Petrov, and Xavier Mateos, "Passively Q-switched femtosecond-laser-written thulium waveguide laser based on evanescent field interaction with carbon nanotubes," Photonics Research 6(10), 971-980 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF