Author Affiliations
Abstract
State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
In order to improve the morphology of microchannels fabricated by femtosecond laser ablation, the thermal process was introduced into the post-treatment processing. It was found that the thermal process cannot only decrease the roughness but also the width and depth of the microchannel. The change rates of width, depth, and roughness of the microchannel increase with processing temperature. When we prolong the time of constant temperature, the change rate of the width decreases at the beginning, and then it tends to be stable. However, the change rates of depth and roughness increase, and then they tend to be stable. In this Letter, we discuss the reasons of the above phenomena.
140.3390 Laser materials processing 230.7380 Waveguides, channeled 
Chinese Optics Letters
2018, 16(10): 101402
Author Affiliations
Abstract
1 Universitat Rovira i Virgili, Departament Química Física i Inorgànica, Física i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007 Tarragona, Spain
2 ITMO University, 49 Kronverkskiy pr., 197101 St. Petersburg, Russia
3 Aplicaciones del Láser y Fotónica, University of Salamanca, 37008 Salamanca, Spain
4 Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
5 Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, 34141 Daejeon, South Korea
6 Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, D-12489 Berlin, Germany
Surface channel waveguides (WGs) were fabricated in a monoclinic Tm3+:KLu(WO4)2 crystal by femtosecond direct laser writing (fs-DLW). The WGs consisted of a half-ring cladding with diameters of 50 and 60 μm located just beneath the crystal surface. They were characterized by confocal laser microscopy and μ-Raman spectroscopy, indicating a reduced crystallinity and stress-induced birefringence of the WG cladding. In continuous-wave (CW) mode, under Ti:sapphire laser pumping at 802 nm, the maximum output power reached 171.1 mW at 1847.4 nm, corresponding to a slope efficiency η of 37.8% for the 60 μm diameter WG. The WG propagation loss was 0.7±0.3 dB/cm. The top surface of the WGs was spin-coated by a polymethyl methacrylate film containing randomly oriented (spaghetti-like) arc-discharge single-walled carbon nanotubes serving as a saturable absorber based on evanescent field coupling. Stable passively Q-switched (PQS) operation was achieved. The PQS 60 μm diameter WG laser generated a record output power of 150 mW at 1846.8 nm with η=34.6%. The conversion efficiency with respect to the CW mode was 87.6%. The best pulse characteristics (energy/duration) were 105.6 nJ/98 ns at a repetition rate of 1.42 MHz.
Waveguides, channeled Lasers, Q-switched Laser materials 
Photonics Research
2018, 6(10): 10000971
Author Affiliations
Abstract
1 Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
2 SM Optics s.r.l., Research Programs, Via John Fitzgerald Kennedy 2, 20871 Vimercate, Italy
3 Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
4 Centre for Materials and Microsystems, Fondazione Bruno Kessler, 38123 Trento, Italy
In this work, we report the modeling and the experimental demonstration of intermodal spontaneous as well as stimulated four-wave mixing (FWM) in silicon waveguides. In intermodal FWM, the phase-matching condition is achieved by exploiting the different dispersion profiles of the optical modes in a multimode waveguide. Since both the energy and the wave vectors have to be conserved in the FWM process, this leads to a wide tunability of the generated photon wavelength, allowing us to achieve a large spectral conversion. We measured several waveguides that differ by their widths and demonstrate large signal generation spanning from the pump wavelength (1550 nm) down to 1202 nm. A suited setup evidences that the different waves propagated indeed on different order modes, which supports the modeling. Despite observing a reduced efficiency with respect to intramodal FWM due to the decreased modal overlap, we were able to show a maximum spectral distance between the signal and idler of 979.6 nm with a 1550 nm pump. Our measurements suggest the intermodal FWM is a viable means for large wavelength conversion and heralded photon sources.
Nonlinear optics, four-wave mixing Wavelength conversion devices Waveguides, channeled 
Photonics Research
2018, 6(8): 08000805
Author Affiliations
Abstract
The State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
A fused silica glass micro-channel can be formed by chemical etching after femtosecond laser irradiation, and the successful etching probability is only 48%. In order to improve the micro-channel fabrication success probability, the method of processing a high-temperature lattice by a femtosecond laser pulse train is provided. With the same pulse energy and scanning speed, the success probability can be increased to 98% by optimizing pulse delay. The enhancement is mainly caused by the nanostructure, which changes from a periodic slabs structure to some intensive and loose pore structures. In this Letter, the optimum pulse energy distribution ratio to the etching is also investigated.
140.0140 Lasers and laser optics 230.7380 Waveguides, channeled 
Chinese Optics Letters
2017, 15(7): 071403
Author Affiliations
Abstract
College of Information Science and Electronic Engineering, Zhejiang University, HangZhou, 310027, China
We propose and demonstrate an ultrasensitive integrated photonic current sensor that incorporates a silicon-based single-mode-multimode-single-mode waveguide (SMSW) structure. This kind of SMSW structure is placed over a direct current carrying power resistor, which produces Joule’s heat to change the temperature of the SMSW and further results in the change of the effective refractive index between different propagating modes. Interference occurs when the modes recombine at the second single mode waveguide. Finally, the current variation is measured by monitoring the shift in the output spectrum of the multimode interferometer. In low current, the wavelength shift has almost linear dependence: ΔλIc. This effect can be used as a current sensor with a slope efficiency of 4.24 nm/A in the range of 0–200 mA.
130.3120 Integrated optics devices 130.6010 Sensors 230.7380 Waveguides, channeled 
Chinese Optics Letters
2016, 14(3): 031301
Author Affiliations
Abstract
Optical waveguides are fabricated in Nd3+:Y3+:SrF2 crystals by a 1-kHz femtosecond laser using the double-line approach. Waveguides with different separations (10, 15, and 20 \mm m) between two consecutive optical breakdown tracks are produced, and their optical performances are explored by end-fire coupling to 780-and 532-nm lasers. Propagation loss of the waveguide with 20-\mm m separation is estimated. The microphotoluminescence and micro-Raman spectra indicate that the original fluorescence and lattice structure of the Nd3+:Y3+:SrF2 crystals are well preserved in the waveguide. Therefore, the obtained waveguide structures are promising candidate for application in integrated waveguide lasers.
230.7380 Waveguides, channeled 140.7090 Ultrafast lasers 160.3380 Laser materials 
Chinese Optics Letters
2013, 11(11): 112301
Author Affiliations
Abstract
We fabricate a buried channel waveguide in neodymium-doped phosphate glass using a double line approach by femtosecond laser writing. Raman spectra reveal an expansion of the glass network in the laser irradiated region. Given the stress-induced positive refractive index change, waveguiding between two separated tracks is demonstrated. The refractive index difference profile of the waveguide is reconstructed from the measured near-field mode. Propagation loss is measured by scattering technique. Microluminescence spectra reveal that the Nd3+ fluorescence property is not significantly affected by waveguide formation process, which indicates that the inscribed waveguide is a good candidate for active device.
230.7380 Waveguides, channeled 140.7090 Ultrafast lasers 
Chinese Optics Letters
2013, 11(10): 102301
Author Affiliations
Abstract
A subwavelength plasmonic waveguide filter with symmetric grating distribution is proposed by using the metal-insulator-metal (MIM) structure. By cascading two gratings with different widths in a period, we can increase the number of pass bands, as well as the transmittance of each band up to ~70% compared with gratings with the same width. Such a device can find applications in various optical systems as wavelength demultiplexing component.
230.1480 Bragg reflectors 240.6680 Surface plasmons 230.7380 Waveguides, channeled 
Chinese Optics Letters
2012, 10(s2): S22301
Author Affiliations
Abstract
1 Key Laboratory of Microelectronics Devices and Integrated Technology Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
2 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Two types of 1 \times 2 multi-mode interference (MMI) splitters with splitting ratios of 85:15 and 72:28 are designed. On the basis of a numerical simulation, an optimal length of the MMI section is obtained. Subsequently, the devices are fabricated and tested. The footprints of the rectangular MMI regions are only 3 \times 18.2 and 3 \times 14.3 (\mu m). The minimum excess losses are 1.4 and 1.1 dB. The results of the test on the splitting ratios are consistent with designed values. The devices can be applied in ultra-compact photonic integrated circuits to realize the "tap" function.
硅线波导 多模干涉分束器 非均匀分光 230.1360 Beam splitters 230.7370 Waveguides 230.7380 Waveguides, channeled 
Chinese Optics Letters
2011, 9(8): 082303
Author Affiliations
Abstract
Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
A compact multimode interference (MMI) splitter with silicon photonic nanowires on silicon-on-insulator (SOI) substrate is designed and fabricated. The footprint of the MMI section is only approximately 3×10 (\mu m). The simulation results show that the device may have a low excess loss of 0.04 dB. The transmission loss of the silicon photonics wire is measured to be 0.73±0.3 dB/mm. The compact size and low transmission loss allow the device to be used in ultra-compact photonic integrated circuits. The device exhibits a good light splitting function. In a spectral range of 1549–1560 nm, the excess loss is 1.5 dB and the average imbalance between the two channels is 0.51 dB.
多模干涉分束器 硅纳米线光波导 230.1360 Beam splitters 230.7370 Waveguides 230.7380 Waveguides, channeled 
Chinese Optics Letters
2009, 7(11): 1041

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!