首页 > 论文 > 中国激光 > 45卷 > 12期(pp:1211001--1)

基于局部对称重加权惩罚最小二乘的拉曼基线校正

Baseline Correction for Raman Spectra Based on Locally Symmetric Reweighted Penalized Least Squares

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

拉曼光谱分析技术具有快速响应、非接触、检测限制小、灵敏度高的优点,广泛应用于生产生活的众多领域。然而实际测得的原始拉曼光谱总会有不同程度的基线漂移,严重影响光谱分析的有效性和准确性。针对现有基线校正方法容易造成估计基线偏低、校正后光谱抬升的问题,提出了一种基于局部对称重加权惩罚最小二乘(LSRPLS)的基线校正算法,该算法在非对称惩罚最小二乘的基础上,使用softsign函数引入局部对称加权的思想,对光谱中无谱峰的基线区域赋予相近的权重,并通过迭代调整估计基线的权重。在模拟和实际拉曼光谱上分别进行了验证。实验结果表明:LSRPLS基线校正算法不仅能对不同类型的光谱基线进行校正,而且与现有的基线校正方法相比,具有更高的准确度和稳定性。基线校正后的光谱在主成分空间上的聚集度得到提升,模型的分类准确性明显提高,说明LSRPLS算法在去除基线的同时,能够保留光谱的有效信息,为拉曼光谱的进一步分析提供了依据。

Abstract

Raman spectroscopy has advantages of rapid response, non-contact, less detection restrictions and high selectivity, which make it widely used in many fields of production and life. However, the actual measured Raman spectra contain varying degrees of baseline drift, which seriously affects the validity and accuracy of spectral analysis. In order to solve the issues that the final baseline is underestimated in the no peak region and the height of peaks might be overestimated in existing baseline correction methods, we propose a novel correction algorithm, which is named locally symmetric reweighted penalized least squares (LSRPLS). Based on asymmetrical least squares, the method works by iteratively adjusting weights of the difference between the fitted baseline and the original signal, introducing the idea of local symmetric weighting by a softsign function. The algorithm is applied to the simulated and the actual Raman spectra to correct the baseline drifting. The results show that the LSRPLS algorithm can not only correct different types of baselines, but also has good advantages in accuracy and stability compared with the existing baseline correction methods. In addition, after baseline correction, the distribution of samples in principal component spaces becomes concentrated, and the classification accuracy of the model is significantly improved. This indicates that the LSRPLS algorithm can retain the spectral information effectively while removing the baseline, which provides a basis for further analysis of Raman spectroscopy.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433.4

DOI:10.3788/cjl201845.1211001

所属栏目:光谱学

基金项目:国家重点研发计划(2016YFC0102004)

收稿日期:2018-06-07

修改稿日期:2018-08-02

网络出版日期:2018-08-10

作者单位    点击查看

赵恒:西安电子科技大学生命科学技术学院, 陕西 西安 710126
陈娱欣:西安电子科技大学通信工程学院, 陕西 西安 710071
续小丁:西安电子科技大学生命科学技术学院, 陕西 西安 710126
胡波:西安电子科技大学生命科学技术学院, 陕西 西安 710126

联系人作者:赵恒(hengzhao@mail.xidian.edu.cn)

【1】McCreery R L. Raman spectroscopy for chemical analysis[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2000.

【2】Wang Y Q, Yan B, Chen L X. SERS tags: novel optical nanoprobes for bioanalysis[J]. Chemical Reviews, 2013, 113(3): 1391-1428.

【3】Wang S, Haishan Z. Real-time in vivo Raman spectroscopy and its clinical applications in early cancer detection[J]. Chinese Journal of Lasers, 2018, 45(2): 0207002.
王爽, Haishan Z. 实时拉曼光谱分析技术及其在临床早期癌症检测中的应用[J]. 中国激光, 2018, 45(2): 0207002.

【4】Zhao F, Peng Y K. Measurement of iodine value of pork′s subcutaneous adipose tissue by interval partial least square and Raman spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(11): 1111001.
赵芳, 彭彦昆. 区间偏最小二乘法结合拉曼光谱测定猪肉皮下脂肪的碘值[J]. 中国激光, 2017, 44(11): 1111001.

【5】Liu G K, Zheng H, Lu J L. Recent progress and perspective of trace antibiotics detection in aquatic environment by surface-enhanced Raman spectroscopy[J]. Trends in Environmental Analytical Chemistry, 2017, 16: 16-23.

【6】Campos J L E, Miranda H, Rabelo C, et al. Applications of Raman spectroscopy in graphene-related materials and the development of parameterized PCA for large-scale data analysis[J]. Journal of Raman Spectroscopy, 2018, 49(1): 54-65.

【7】Huzortey A A, Anderson B, Owusu A. A composite algorithm for optimized baseline correction inRaman spectroscopy[C]. Frontiers in Optics 2017, Frontiers in Optics, Washington, D.C., 2017.

【8】Tatarkovi M, Synytsya A, ovíková L, et al. The minimizing of fluorescence background in Raman optical activity and Raman spectra of human blood plasma[J]. Analytical and Bioanalytical Chemistry, 2015, 407(5): 1335-1342.

【9】Hu Y G, Zhou J J, Tang J, et al. The application of complex wavelet transform to spectral signals background deduction[J]. Chromatographia, 2013, 76(11/12): 687-696.

【10】Lieber C A, Mahadevan-Jansen A. Automated method for subtraction of fluorescence from biological Raman spectra[J]. Applied Spectroscopy, 2003, 57(11): 1363-1367.

【11】Cao A, Pandya A K, Serhatkulu G K, et al. A robust method for automated background subtraction of tissue fluorescence[J]. Journal of Raman Spectroscopy, 2007, 38(9): 1199-1205.

【12】Wang T, Dai L K. Background subtraction of Raman spectra based on iterative polynomial smoothing[J]. Applied Spectroscopy, 2017, 71(6): 1169-1179.

【13】Yang G Y, Li L, Chen H, et al. Baseline correction method for Raman spectra based on generalized Whittaker smoother[J]. Chinese Journal of Lasers, 2015, 42(9): 0915003.
杨桂燕, 李路, 陈和, 等. 基于广义Whittaker平滑器的拉曼光谱基线校正方法[J]. 中国激光, 2015, 42(9): 0915003.

【14】Eilers P H C, Boelens H F M. Baseline correction with asymmetric least squares smoothing[J/OL]. (2005-10-21)[2018-06-01]. https:∥zanran_storage.s3.amazonaws.com/www.science.uva.nl/ContentPages/443199618.pdf.

【15】He S X, Zhang W, Liu L J, et al. Baseline correction for Raman spectra using an improved asymmetric least squares method[J]. Anal Methods, 2014, 6(12): 4402-4407.

【16】Oller-Moreno S, Pardo A, Jiménez-Soto J M, et al. Adaptive asymmetric least squares baseline estimation for analytical instruments[C]. 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), 2014: 14281834.

【17】Zhang Z M, Chen S, Liang Y Z. Baseline correction using adaptive iteratively reweighted penalized least squares[J]. Analyst, 2010, 135(5): 1138-1146.

【18】Park A, Baek S J, Park J Q, et al. Automatic selection of optimal parameter for baseline correction using asymmetrically reweighted penalized least squares[J]. Journal of the Institute of Electronics and Information Engineers, 2016, 53(3): 124-131.

【19】Li Z, Zhan D J, Wang J J, et al. Morphological weighted penalized least squares for background correction[J]. Analyst, 2013, 138(16): 4483-4492.

【20】Schulze G, Jirasek A, Yu M M L, et al. Investigation of selected baseline removal techniques as candidates for automated implementation[J]. Applied Spectroscopy, 2005, 59(5): 545-574.

引用该论文

Zhao Heng,Chen Yuxin,Xu Xiaoding,Hu Bo. Baseline Correction for Raman Spectra Based on Locally Symmetric Reweighted Penalized Least Squares[J]. Chinese Journal of Lasers, 2018, 45(12): 1211001

赵恒,陈娱欣,续小丁,胡波. 基于局部对称重加权惩罚最小二乘的拉曼基线校正[J]. 中国激光, 2018, 45(12): 1211001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF