首页 > 论文 > Photonics Research > 7卷 > 1期(pp:89-97)

Antenna-assisted subwavelength metal–InGaAs–metal structure for sensitive and direct photodetection of millimeter and terahertz waves

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Millimeter and terahertz wave photodetectors have a wide range of applications. However, the state-of-the-art techniques lag far behind the urgent demand due to the structure and performance limitations. Here, we report sensitive and direct millimeter and terahertz wave photodetection in compact InGaAs-based subwavelength ohmic metal–semiconductor–metal structures. The photoresponse originates from unidirectional transportation of nonequilibrium electrons induced by surface plasmon polaritons under irradiation. The detected quantum energies of electromagnetic waves are far below the bandgap of InGaAs, offering, to the best of our knowledge, a novel direct photoelectric conversion pathway for InGaAs beyond its bandgap limit. The achieved room temperature rise time and noise equivalent power of the detector are 45 μs and 20 pW·Hz?1/2, respectively, at the 0.0375 THz (8 mm) wave. The detected wavelength is tunable by mounting different coupling antennas. Room temperature terahertz imaging of macroscopic samples at around 0.166 THz is also demonstrated. This work opens an avenue for sensitive and large-area uncooled millimeter and terahertz focal planar arrays.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/prj.7.000089

所属栏目:Optoelectronics

基金项目:Ministry of Education - Singapore (MOE)10.13039/501100001459 (RG177/17); Economic Development Board - Singapore (EDB)10.13039/501100001446 (NRF2013SAS-SRP001-019); Agency for Science, Technology and Research (A*STAR)10.13039/501100001348 (1720700038); China National Funds for Distinguished Young Scientists10.13039/501100005153 (61625505); Science and Technology Commission of Shanghai Municipality (STCSM)10.13039/501100003399 (16JC1403400).

收稿日期:2018-09-21

录用日期:2018-11-04

网络出版日期:2018-11-11

作者单位    点击查看

Jinchao Tong:School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, SingaporeState Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Yue Qu:State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Fei Suo:School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Wei Zhou:State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Zhiming Huang:State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, ChinaKey Laboratory of Space Active Opto-electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, Chinae-mail: zmhuang@mail.sitp.ac.cn
Dao Hua Zhang:School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singaporee-mail: EDHZHANG@ntu.edu.sg

联系人作者:联系作者

【1】D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

【2】Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3 , 732–737 (2009).

【3】B. Ferguson, and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1 , 26–33 (2002).

【4】N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340 , 1304–1307 (2013).

【5】G. Auton, D. B. But, J. Zhang, E. Hill, D. Coquillat, C. Consejo, P. Nouvel, W. Knap, L. Varani, F. Teppe, J. Torres, and A. Song, “Terahertz detection and imaging using graphene ballistic rectifiers,” Nano Lett. 17 , 7015–7020 (2017).

【6】F. Sizov, and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34 , 278–347 (2010).

【7】V. I. Shashkin, V. L. Vaks, V. M. Danil’tsev, A. V. Maslovsky, A. V. Murel, S. D. Nikiforov, O. I. Khrykin, and Y. I. Chechenin, “Microwave detectors based on low-barrier planar Schottky diodes and their characteristics,” Radiophys. Quantum Electron. 48 , 485–490 (2005).

【8】M. Dyakonov, and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71 , 2465–2468 (1993).

【9】H. Qin, X. Li, J. Sun, Z. Zhang, Y. Sun, Y. Yu, X. Li, and M. Luo, “Detection of incoherent terahertz light using antenna-coupled high-electron-mobility field-effect transistors,” Appl. Phys. Lett. 110 , 171109 (2017).

【10】W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81 , 4637–4639 (2002).

【11】C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4 , 1622 (2013).

【12】K. Peng, P. Parkinson, L. Fu, Q. Gao, N. Jiang, Y.-N. Guo, F. Wang, H. J. Joyce, J. L. Boland, H. H. Tan, C. Jagadish, and M. B. Johnston, “Single nanowire photoconductive terahertz detectors,” Nano Lett. 15 , 206–210 (2014).

【13】H. C. Liu, C. Y. Song, A. J. SpringThorpe, and J. C. Cao, “Terahertz quantum-well photodetector,” Appl. Phys. Lett. 84 , 4068–4070 (2004).

【14】L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11 , 865–871 (2012).

【15】J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenkins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, “Dual-gated bilayer graphene hot-electron bolometer,” Nat. Nanotechnol. 7 , 472–478 (2012).

【16】X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9 , 814–819 (2014).

【17】F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9 , 780–793 (2014).

【18】L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, and M. S. Vitiello, “Black phosphorus terahertz photodetectors,” Adv. Mater. 27 , 5567–5572 (2015).

【19】W. Tang, A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, “Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator,” Adv. Funct. Mater. 28 , 1801786 (2018).

【20】S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403 , 405–407 (2000).

【21】J. Tong, W. Zhou, Y. Qu, Z. Xu, Z. Huang, and D. H. Zhang, “Surface plasmon induced direct detection of long wavelength photons,” Nat. Commun. 8 , 1660 (2017).

【22】C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445 , 39–46 (2007).

【23】W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424 , 824–830 (2003).

【24】J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9 , 193–204 (2010).

【25】J. Tong, L. Y. M. Tobing, S. Qiu, D. H. Zhang, and A. G. Unil Perera, “Room temperature plasmon-enhanced InAs0.91Sb0.09-based heterojunction n-i-p mid-wave infrared photodetector,” Appl. Phys. Lett. 113 , 011110 (2018).

【26】A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6 , 946–950 (2007).

【27】S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

【28】A. Rogalski, Infrared Detectors , 2nd ed. (CRC Press, 2010).

【29】R. J. Nicholas, J. C. Portal, C. Houlbert, P. Perrier, and T. P. Pearsall, “An experimental determination of the effective masses for GaxIn1–xAsyP1–y alloys grown on InP,” Appl. Phys. Lett. 34 , 492–494 (1979).

【30】K. Moon, H. Han, and I. Park, “Terahertz folded half-wavelength dipole antenna for high output power,” in International Topical Meeting on Microwave Photonics (IEEE, 2005), Vol.?2, pp.?301–304.

【31】A. Takazato, T. Matsui, J. Kitagawa, and Y. Kadoya, “InGaAs photoconductive antennas for THz emission and detection with 1.56??μm excitation,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2007), pp.?1–2.

【32】A. Singh, A. Pashkin, S. Winnerl, M. Helm, and H. Schneider, “Gapless broadband terahertz emission from a germanium photoconductive emitter,” ACS Photon. 5 , 2718–2723 (2018).

【33】K. Moon, E. S. Lee, I.-M. Lee, D. W. Park, and K. H. Park, “Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures,” Appl. Phys. Lett. 112 , 031102 (2018).

【34】J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, “Simulation and optimisation of terahertz emission from InGaAs and InP photoconductive switches,” Solid State Commun. 136 , 595–600 (2005).

【35】Y. A. Goldberg, and N. M. Shmidt, “Gallium indium arsenide phosphide (GaxIn1–xAsyP1–y),” in Ternary and Quaternary III-V Compounds, Vol.?2 of Handbook Series on Semiconductor Parameters (World Scientific, 1999).

【36】E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).

【37】A. B. Constantine, Antenna Theory: Analysis and Design , 3rd ed. (Wiley, 2005).

【38】A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56??μm pulse excitation,” Appl. Phys. Lett. 91 , 011102 (2007).

【39】C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque Sierra, M. W?rle, R. Kienberger, and A. Holleitner, “Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters,” Nat. Commun. 9 , 2471 (2018).

【40】R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, “Tunable CW-THz system with a log-periodic photoconductive emitter,” Solid. State. Electron. 48 , 2041–2045 (2004).

【41】A. Zak, M. A. Andersson, M. Bauer, J. Matukas, A. Lisauskas, H. G. Roskos, and J. Stake, “Antenna-integrated 0.6??THz FET direct detectors based on CVD graphene,” Nano Lett. 14 , 5834–5838 (2014).

【42】M. Venkatesh, K. S. Rao, T. S. Abhilash, S. P. Tewari, and A. K. Chaudhary, “Optical characterization of GaAs photoconductive antennas for efficient generation and detection of terahertz radiation,” Opt. Mater. 36 , 596–601 (2014).

【43】E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17 , 7790–7799 (2009).

【44】M. A. Klompenhouwer, “51.1: Temporal impulse response and bandwidth of displays in relation to motion blur,” in SID Symposium Digest of Technical Papers (2005), Vol.?36, pp.?1578–1581.

【45】E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86 , 254102 (2005).

【46】A. Semenov, O. Cojocari, H.-W. Hübers, F. Song, A. Klushin, and A.-S. Müller, “Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation,” IEEE Electron Dev. Lett. 31 , 674–676 (2010).

【47】R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D. K. Maude, S. Rumyantsev, and M. S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power,” Appl. Phys. Lett. 89 , 253511 (2006).

引用该论文

Jinchao Tong, Yue Qu, Fei Suo, Wei Zhou, Zhiming Huang, and Dao Hua Zhang, "Antenna-assisted subwavelength metal–InGaAs–metal structure for sensitive and direct photodetection of millimeter and terahertz waves," Photonics Research 7(1), 89-97 (2019)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF