首页 > 论文 > 光学学报 > 39卷 > 1期(pp:131001--1)

光学薄膜塔姆态诱导石墨烯近红外光吸收增强

Near-Infrared Light Absorption Enhancement in Graphene Induced by the Tamm State in Optical Thin Films

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种增强石墨烯光吸收率的布拉格光栅/石墨烯/金属薄膜光学结构。运用传输矩阵和时域有限差分法研究了其光传输特性, 发现布拉格光栅与金属薄膜之间形成的塔姆等离激元局域场可有效增强光与石墨烯的相互作用, 单层石墨烯的近红外光吸收率约增大了36倍。探讨了布拉格光栅的周期、石墨烯位置、入射角度、布拉格光栅层厚度及石墨烯化学势与石墨烯光吸收的关系。研究结果表明, 上述物理参数的变化可有效调控石墨烯的光吸收波长及效率。研究结果为高性能石墨烯探测器等新型光电子器件的实现提供了新的途径。

Abstract

A Bragg grating/graphene/metallic thin film-type optical structure is prepared to enhance light absorption in graphene, and the optical propagation properties of the structure are investigated using the transfer matrix and finite-difference time-domain methods. The light-graphene interaction can be effectively enhanced using strongly confined Tamm plasmon polaritons formed between the Bragg grating and metallic film. Thus, an approximately 36-fold increase could be observed in the near-infrared light absorption of the graphene. Additionally, the dependence of graphene absorption on the Bragg grating period number, graphene position, angle of incident light, thickness of the Bragg grating layers, and chemical potential of the graphene is investigated. The results show that the wavelength and efficiency of light absorption in graphene can be controlled by adjusting the aforementioned physical parameters. The results of this study provide a new pathway for realizing high-performance graphene devices, especially photodetectors.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.2

DOI:10.3788/aos201939.0131001

所属栏目:薄膜

基金项目:国家重点研发计划(2017YFA0303800)、国家自然科学基金(11634010, 61705186, 11774290, 61377035)、中央高校基本科研项目(3102018zy039, 3102018zy050)、陕西省自然科学基础研究计划(2017JQ1023)、陕西省留学人员科技活动择优资助项目(2017007)

收稿日期:2018-07-26

修改稿日期:2018-08-26

网络出版日期:2018-09-10

作者单位    点击查看

黎志文:西北工业大学理学院超常条件材料物理与化学教育部重点实验室与陕西省光信息技术重点实验室, 陕西 西安 710072
陆华:西北工业大学理学院超常条件材料物理与化学教育部重点实验室与陕西省光信息技术重点实验室, 陕西 西安 710072
李扬武:西北工业大学理学院超常条件材料物理与化学教育部重点实验室与陕西省光信息技术重点实验室, 陕西 西安 710072
焦晗:西北工业大学理学院超常条件材料物理与化学教育部重点实验室与陕西省光信息技术重点实验室, 陕西 西安 710072
赵建林:西北工业大学理学院超常条件材料物理与化学教育部重点实验室与陕西省光信息技术重点实验室, 陕西 西安 710072

联系人作者:陆华(hualu@nwpu.edu.cn)

【1】Li Z Q, Feng D D, Li X, et al. Graphene surface plasmon polaritons based photoelectric modulator with double branched structure[J]. Acta Optica Sinica, 2018, 38(1): 0124001.
李志全, 冯丹丹, 李欣, 等. 基于石墨烯表面等离激元的双支节结构光电调制器[J]. 光学学报, 2018, 38(1): 0124001.

【2】Fan P Y, Chettiar U K, Cao L Y, et al. An invisible metal-semiconductor photodetector[J]. Nature Photonics, 2012, 6: 380-385.

【3】Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7: 892-896.

【4】Bao Q L, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694.

【5】Fang Z Y, Liu Z, Wang Y M, et al. Graphene-antenna sandwich photodetector[J]. Nano Letters, 2012, 12(7): 3808-3813.

【6】Zhu X L, Shi L, Schmidt M S, et al. Enhanced light-matter interactions in graphene-covered gold nanovoid arrays[J]. Nano Letters, 2013, 13(10): 4690-4696.

【7】Engel M, Steiner M, Lombardo A, et al. Light-matter interaction in a microcavity-controlled graphene transistor[J]. Nature Communications, 2012, 3: 906.

【8】Stauber T, Gómez-Santos G, García de Abajo F J. Extraordinary absorption of decorated undoped graphene[J]. Physical Review Letters, 2014, 112(7): 077401.

【9】Zhao B, Zhao J M, Zhang Z M. Enhancement of near-infrared absorption in graphene with metal gratings[J]. Applied Physics Letters, 2014, 105(3): 031905.

【10】Lu H, Cumming B P, Gu M. Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths[J]. Optics Letters, 2015, 40(15): 3647-3650.

【11】Li X H, Zhu J M, Wei B Q. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications[J]. Chemical Society Reviews, 2016, 45: 3145-3187.

【12】Jiang X Q, Liu Z B, Tian J G. The optical properties of graphene and its application[J]. Progress in Physics, 2017, 37(1): 22-36.
姜小强, 刘智波, 田建国. 石墨烯光学性质及其应用研究进展[J]. 物理学进展, 2017, 37(1): 22-36.

【13】Liu B, Tang C J, Chen J, et al. Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials[J]. Optics Express, 2017, 25(10): 12061-12068.

【14】Cai Y J, Zhu J F, Liu Q H. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers[J]. Applied Physics Letters, 2015, 106(4): 043105.

【15】Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

【16】Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

【17】Ren H, Li X, Zhang Q, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805-809.

【18】Lu H, Liu X M, Mao D. Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems[J]. Physical Review A, 2012, 85(5): 053803.

【19】Lu H, Zeng C, Zhang Q M, et al. Graphene-based active slow surface plasmon polaritons[J]. Scientific Reports, 2015, 5: 8443.

【20】Zhang X L, Song J F, Li X B, et al. Optical Tamm states enhanced broad-band absorption of organic solar cells[J]. Applied Physics Letters, 2012, 101(24): 243901.

【21】Kaliteevski M, Iorsh I, Brand S, et al. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror[J]. Physical Review B, 2007, 76(16): 165415.

【22】Sasin M E, Seisyan R P, Kalitteevski M A, et al. Tamm plasmon polaritons: Slow and spatially compact light[J]. Applied Physics Letters, 2008, 92(25): 251112.

【23】Christensen J, Manjavacas A, Thongrattanasiri S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano, 2012, 6(1): 431-440.

【24】Chen P Y, Alù A. Atomically thin surface cloak using graphene monolayers[J]. ACS Nano, 2011, 5(7): 5855-5863.

【25】Lu H, Gan X T, Mao D, et al. Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides[J]. Photonics Research, 2017, 5(3): 162-167.

【26】Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370.

【27】Wartak M S. Computational photonics-An introduction with MATLAB[M]. Wu Z S, Wu X S, Transl. Beijing: Science Press, 2015: 56-60.
瓦泰克. 计算光子学—MATLAB导论[M]. 吴宗森, 吴小山, 译. 北京: 科学出版社, 2015: 56-60.

【28】Taflove A, Hagness S. Computational electrodynamics: The finite-difference time-domain method[M]. 3rd ed. Boston: Artech House, 2005: 1-997.

【29】Piper J R, Fan S H. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance[J]. ACS Photonics, 2014, 1(4): 347-353.

引用该论文

Li Zhiwen,Lu Hua,Li Yangwu,Jiao Han,Zhao Jianlin. Near-Infrared Light Absorption Enhancement in Graphene Induced by the Tamm State in Optical Thin Films[J]. Acta Optica Sinica, 2019, 39(1): 0131001

黎志文,陆华,李扬武,焦晗,赵建林. 光学薄膜塔姆态诱导石墨烯近红外光吸收增强[J]. 光学学报, 2019, 39(1): 0131001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF