首页 > 论文 > 中国激光 > 46卷 > 1期(pp:101001--1)

光电振荡环路的微波光子变频与移相技术研究

Microwave Phonotic Frequency Conversion and Phase-Shifting Technology of Photoelectronic Oscillator Loop

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

微波光子变频与移相技术是微波光子雷达的两个关键技术, 若在实现微波光子变频的同时完成移相, 可以大幅降低微波光子雷达系统的复杂度和体积。本研究基于光电振荡环路提出一种可同时完成微波光子变频与移相的方法, 利用光电振荡环路对基频微波信号进行上变频, 通过改变光电振荡器的输出频率, 实现1.6~21.16 GHz可调谐上变频; 调节可调谐激光器的输出波长, 利用色散补偿光纤的延迟效应等效改变上变频信号的相位, 调谐范围可达50.4°。该方案将微波光子变频与移相技术结合, 在拓展光电振荡器应用范围的同时, 对微波光子雷达的实用化也有一定借鉴意义。

Abstract

Microwave photonic frequency conversion and phase-shifting technology are both key technologies of microwave photonic radar. The complexity and volume of the microwave photon radar system can be greatly reduced if the phase shift is completed while the microwave photon frequency conversion is realized. A microwave photonic frequency conversion and phase-shifting method is proposed based on the optoelectronic oscillator loop. The fundamental frequency microwave signal is up-converted by using the photoelectric oscillation loop. The 1.6-21.16 GHz tunable up-conversion signal is regenerated by adjusting the frequency of the optoelectronic oscillator. The tuning range can reach 50.4° by adjusting the output wavelength of the tunable laser and using the delay effect of dispersion compensating fiber to change the phase of up-conversion signal. The two technologies of microwave photon frequency conversion and phase shifting are combined, which not only extend application scope of optoelectronic oscillator, but also give some references to the application of microwave photon radar.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN929.1

DOI:10.3788/cjl201946.0101001

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金 (61371121, 61673393)

收稿日期:2018-07-10

修改稿日期:2018-09-05

网络出版日期:2018-09-25

作者单位    点击查看

李诚鑫:陆军工程大学通信工程学院, 江苏 南京 210007
张宝富:陆军工程大学通信工程学院, 江苏 南京 210007
卢麟:陆军工程大学通信工程学院, 江苏 南京 210007
滕义超:陆军工程大学野战工程学院, 江苏 南京 210007
李建华:陆军工程大学通信工程学院, 江苏 南京 210007

联系人作者:张宝富(zhangbaofu@163.com)

【1】Chen X L, Guan J, Li X Y, et al. Effective coherent integration method for marine target with micromotion via phase differentiation and radon-Lv′s distribution[J]. IET Radar, Sonar & Navigation, 2015, 9(9): 1284-1295.

【2】Tao R, Zhang N, Wang Y. Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar[J]. IET Radar, Sonar & Navigation, 2011, 5(1): 12-22.

【3】Uysal F, Selesnick I, Pillai U, et al. Dynamic clutter mitigation using sparse optimization[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(7): 37-49.

【4】Dai J, Dai Y T, Yin F F, et al. Compact optoelectronic oscillator based on a Fabry-Perot resonant electro-optic modulator[J]. Chinese Optics Letters, 2016, 14(11): 110701.

【5】Pan S L, Zhang Y M. Microwave photonic radar and key technologies[J]. Science & Technology Review, 2017, 35(20): 36-52.
潘时龙, 张亚梅. 微波光子雷达及关键技术[J]. 科技导报, 2017, 35(20): 36-52.

【6】Zou G J, Zhang B F, Li C X, et al. Chaotic photonic compressed sampling based on optoelectronic oscillator[J]. Chinese Journal of Lasers, 2017, 44(11): 1106002.
邹广健, 张宝富, 李诚鑫, 等. 光电振荡器的混沌光子压缩采样方法[J]. 中国激光, 2017, 44(11): 1106002.

【7】Chen X L, Guan J, Huang Y, et al. Radar low-observable target detection[J]. Science & Technology Review, 2017, 35(11): 30-38.
陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11): 30-38.

【8】Du T H, Zhu D, Pan S L. Polarization-maintained coupled optoelectronic oscillator incorporating an unpumped erbium-doped fiber[J]. Chinese Optics Letters, 2018, 16(1): 010604.

【9】Chi H, Yao J P. Frequency quadrupling and upconversion in a radio over fiber link[J]. Journal of Lightwave Technology, 2008, 26(15): 2706-2711.

【10】Shin M, Kumar P. Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2007, 19(21): 1726-1728.

【11】Peng H F, Xu Y C, Peng X F, et al. High efficiency 36-50 GHz millimeter-wave down conversion utilizing a wideband tunable optoelectronic oscillator based on stimulated Brillouin scattering[C]∥Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California, USA. Washington: OSA, 2017:SM1O.2.

【12】Zhou P, Tang Z Z, Pan S L, et al. Photonic microwave up-conversion using optoelectronic oscillator based on polarisation modulator[J]. Electronics Letters, 2012, 48(5):271-272.

【13】Tao J, Wang P, Huang L, et al. All-optical signal upconversion using optically-injected DFB laser and embedded optoelectronic oscillator for radio-over-fiber applications[C]∥Optical Fiber Communication Conference 2017, March 19-23, 2017, Los Angeles, California united States. Washington: OSA, 2017: Tu2F.2.

【14】Wang L X, Zhu N H, Li W, et al. A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator and a chirped fiber Bragg grating[J]. IEEE Photonics Technology Letters, 2011, 23(22): 1688-1690.

【15】Gu Y Y, Hu J J, Kang Z J, et al. Optical up-conversion of single sideband signal using frequency quadrupling technique for radio over fiber system[C]∥2014 13th International Conference on Optical Communications and Networks (ICOCN), November 9-10, 2014, Suzhou, China. New York: IEEE, 2014: 14822952.

【16】Liu S F, Zhu D, Pan S L. Wideband signal upconversion and phase shifting based on a frequency tunable optoelectronic oscillator[J]. Optical Engineering, 2014, 53(3): 036101.

【17】Yu H C, Chen M H, Gao H B, et al. Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator[J]. Photonics Research, 2014, 2(4): B1-B4.

【18】Yang B, Jin X F, Chen Y, et al. Photonic microwave up-conversion of vector signals based on an optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2013, 25(18): 1758-1761.

【19】Zou X H, Li M, Pan W, et al. Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator[J]. Optics Express, 2014, 22(9):11129-11139.

【20】Zhu D, Liu S F, Pan S L. Multichannel up-conversion based on polarization-modulated optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2014, 26(6): 544-547.

【21】Li T, Chan E H W, Wang X, et al. All-optical photonic microwave phase shifter requiring only a single DC voltage control[J]. IEEE Photonics Journal, 2016, 8(4): 5501008.

【22】Li W Z, Yao J P. Investigation of photonically assisted microwave frequency multiplication based on external modulation[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3259-3268.

【23】Shen Y, Yu Y, Wang R, et al. Optically controlled true time delay technique based on super chirp fiber grating[J]. Journal of Military Communications Technology, 2009, 30(2): 100-104.
沈颖, 于晔, 王荣, 等. 光纤光栅技术与应用专题讲座(四) 第8讲 基于超结构啁啾光纤光栅的光控实延时技术[J]. 军事通信技术, 2009, 30(2): 100-104.

【24】Li D W, Jia C Y, Ye L H, et al. True-time-delay technologies of optical controlled phased array antenna[J]. Laser & Optoelectronics Progress, 2006, 43(3): 37-42.
李冬文, 贾春燕, 叶莉华, 等. 光控相控阵雷达中的真延时技术[J]. 激光与光电子学进展, 2006, 43(3): 37-42.

引用该论文

Li Chengxin,Zhang Baofu,Lu Lin,Teng Yichao,Li Jianhua. Microwave Phonotic Frequency Conversion and Phase-Shifting Technology of Photoelectronic Oscillator Loop[J]. Chinese Journal of Lasers, 2019, 46(1): 0101001

李诚鑫,张宝富,卢麟,滕义超,李建华. 光电振荡环路的微波光子变频与移相技术研究[J]. 中国激光, 2019, 46(1): 0101001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF