首页 > 论文 > 中国激光 > 47卷 > 11期(pp:1102004--1)

能量配比系数对铝合金激光-MIG复合焊接气孔的影响

Effect of Energy Ratio Coefficient on Pore During Aluminum Alloy Laser-MIG Hybrid Welding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为研究能量配比系数(激光功率与电弧功率的比值)对铝合金激光-MIG复合焊接气孔的影响,采用X射线无损检测与金相显微组织观察法对6 mm厚6061铝合金激光-MIG复合焊接接头在能量配比系数为4.0、3.5、3.1下的气孔进行了分析。结果发现:激光功率对焊缝横截面底部熔宽的影响显著,增大电弧功率能有效增大复合作用区域的深度;在较高的能量配比系数下,焊缝内部气孔的直径较大,但其数量较少,气孔率较低;在焊缝横截面上,气孔主要分布在焊缝上部,下部较少;但是当能量配比系数降低至3.1时,气孔的分布趋于均匀,下部气孔数量增加显著,且工艺气孔的数量也有所增加。结果表明,提高激光功率的能量占比有利于降低气孔率。

Abstract

To study the effect of energy ratio coefficient (the ratio of laser power to arc power) on pores during the aluminum alloy laser-MIG hybrid welding process, 6 mm thick 6061 aluminum alloy laser-MIG hybrid welded joints were measured using X-ray nondestructive testing and metallographic microstructure observation. Pores under the energy ratio coefficient of 4.0, 3.5, and 3.1 were analyzed. It was observed that the laser power has a significant effect on the bottom weld width in the cross-setion of the weld and increasing the arc power can effectively deepen the hybrid zone. Under the higher-energy ratio coefficient, the diameter of the pores inside the weld is larger, but the number of pores is smaller, contributing to low porosity. The pores in the weld cross-section are mainly distributed in the upper part of the weld and less in the lower part. However, when the energy ratio coefficient is reduced to 3.1, the distribution of pores tends to be uniform, the number of pores in the lower part significantly increases, and the number of process pores increases. These results show that increasing the energy ratio of laser power during laser-MIG is beneficial to reduce the porosity.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TG456.7

DOI:10.3788/CJL202047.1102004

所属栏目:激光制造

基金项目:国家重点实验室开放课题;

收稿日期:2020-05-27

修改稿日期:2020-06-30

网络出版日期:2020-11-01

作者单位    点击查看

刘婷:南京航空航天大学材料科学与技术学院, 江苏 南京 211106
赵艳秋:南京航空航天大学材料科学与技术学院, 江苏 南京 211106
周旭东:南京航空航天大学材料科学与技术学院, 江苏 南京 211106
王磊磊:南京航空航天大学材料科学与技术学院, 江苏 南京 211106
占小红:南京航空航天大学材料科学与技术学院, 江苏 南京 211106

联系人作者:占小红(zhanxiaohong@126.com)

备注:国家重点实验室开放课题;

【1】Wang Y. Experimental study on laser welding technology of 6061 aluminum alloy plate [J]. Light Alloy Fabrication Technology. 2019, 47(8): 44-47.
王毅. 6061铝合金板激光焊接工艺试验研究 [J]. 轻合金加工技术. 2019, 47(8): 44-47.
Wang Y. Experimental study on laser welding technology of 6061 aluminum alloy plate [J]. Light Alloy Fabrication Technology. 2019, 47(8): 44-47.
王毅. 6061铝合金板激光焊接工艺试验研究 [J]. 轻合金加工技术. 2019, 47(8): 44-47.

【2】Ning C Y, Huang Y H, Zhang G Y, et al. Wear resistance and electrochemical properties of 6061 aluminum alloys treated by laser shock peening [J]. Laser & Optoelectronics Progress. 2018, 55(6): 061403.
宁成义, 黄亿辉, 张广义, 等. 激光冲击强化6061铝合金的耐磨性能及电化学性能 [J]. 激光与光电子学进展. 2018, 55(6): 061403.

【3】Huang Y, Huang J, Nie P L. Microstructures and textures of 6016 and 5182 aluminum laser welded joints [J]. Chinese Journal of Lasers. 2019, 46(4): 0402003.
黄毅, 黄坚, 聂璞林. 6016和5182铝合金激光焊接接头的组织与织构 [J]. 中国激光. 2019, 46(4): 0402003.

【4】Liu Z J, Gu S Y, Zhang P L, et al. Welding seam forming mechanism of high-strength steel laser-metal inert gas hybrid welding with butt gap [J]. Chinese Journal of Lasers. 2019, 46(9): 0902006.
刘政君, 顾思远, 张培磊, 等. 高强钢激光-MIG复合焊对接间隙下的焊缝成形机理 [J]. 中国激光. 2019, 46(9): 0902006.

【5】He S, Chen H, Cai C, et al. Influence of He-Ar mixed shielding gas on laser-MIG hybrid welding characteristic of aluminum alloys [J]. Chinese Journal of Lasers. 2018, 45(12): 1202005.
何双, 陈辉, 蔡创, 等. 氦-氩混合保护气体对铝合金激光-MIG复合焊接特性的影响 [J]. 中国激光. 2018, 45(12): 1202005.

【6】Panwar N, Chauhan A. Parametric behaviour optimisation of macro and micro hardness for heat treated Al6061 -red mud composite [J]. Journal of Materials Research and Technology. 2019, 8(1): 660-669.Panwar N, Chauhan A. Parametric behaviour optimisation of macro and micro hardness for heat treated Al6061 -red mud composite [J]. Journal of Materials Research and Technology. 2019, 8(1): 660-669.

【7】Casalino G, Mortello M, Leo P, et al. Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy [J]. Materials & Design. 2014, 61: 191-198.Casalino G, Mortello M, Leo P, et al. Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy [J]. Materials & Design. 2014, 61: 191-198.

【8】Wang H Y, Sun J, Liu L M. Formation and controlling mechanism of pores in laser-TIG hybrid welding of 6061-T6 aluminum alloys at high peed [J]. Chinese Journal of Lasers. 2018, 45(3): 0302001.
王红阳, 孙佳, 刘黎明. 6061-T6铝合金激光-电弧复合高速焊气孔形成及控制机制 [J]. 中国激光. 2018, 45(3): 0302001.

【9】Wu X Y, Xu J X, Gao X S, et al. Numerical simulation of thermal process and fluid flow field in laser-MIG hybrid weld pools [J]. Chinese Journal of Lasers. 2019, 46(9): 0902003.
吴向阳, 徐剑侠, 高学松, 等. 激光-MIG复合焊接热过程与熔池流场的数值分析 [J]. 中国激光. 2019, 46(9): 0902003.

【10】Bunaziv I, Akselsen O M, Salminen A, et al. Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy [J]. Journal of Materials Processing Technology. 2016, 233: 107-114.

【11】Pan J C. Research on molten pool behavior and mechanism during laser deep penetration welding of dissimilar metals of steel/aluminum [D]. Changsha: Hunan University. 2018.
潘井春. 钢/铝异种金属激光深熔焊过程中熔池行为及机理研究 [D]. 长沙: 湖南大学. 2018.

【12】Zhang D. Study on multiphase coupling flow field behavior of Invar alloy laser-MIG hybrid welding process [D]. Nanjing: Nanjing University of Aeronautics and Astronautics. 2018.
张聃. Invar合金激光-MIG复合焊接过程多相耦合流场行为研究 [D]. 南京: 南京航空航天大学. 2018.

【13】Zhan X H, Zhao Y Q, Liu Z M, et al. Microstructure and porosity characteristics of 5A06 aluminum alloy joints using laser-MIG hybrid welding [J]. Journal of Manufacturing Processes. 2018, 35: 437-445.

【14】Zhu Y L. Study on arc behavior and droplet transition of laser-MIG double-wire hybrid welding [D]. Tianjin: Tianjin University. 2014.
朱艳丽. 激光-MIG双丝复合焊电弧行为及熔滴过渡研究 [D]. 天津: 天津大学. 2014.

【15】Tan B, Ma B, Zhang L J, et al. Microstructure and properties of welding joints of aluminium alloy with medium thickness by the laser-MIG hybrid welding [J]. Ordnance Material Science and Engineering. 2010, 33(5): 17-20.
谭兵, 马冰, 张立君, 等. 中厚度铝合金激光-MIG复合焊接组织与性能研究 [J]. 兵器材料科学与工程. 2010, 33(5): 17-20.

【16】Yan S H, Zhu Z T, Nie Y, et al. Process of 7N01 aluminum alloy welding by hybrid laser-MIG welding method [J]. Hot Working Technology. 2014, 43(3): 37-39, 43.
闫少华, 朱宗涛, 聂媛, 等. 7N01铝合金激光-MIG复合焊接工艺研究 [J]. 热加工工艺. 2014, 43(3): 37-39, 43.
Yan S H, Zhu Z T, Nie Y, et al. Process of 7N01 aluminum alloy welding by hybrid laser-MIG welding method [J]. Hot Working Technology. 2014, 43(3): 37-39, 43.
闫少华, 朱宗涛, 聂媛, 等. 7N01铝合金激光-MIG复合焊接工艺研究 [J]. 热加工工艺. 2014, 43(3): 37-39, 43.

【17】Hu B, den Ouden G. Laser induced stabilisation of the welding arc [J]. Science and Technology of Welding and Joining. 2005, 10(1): 76-81.

引用该论文

Liu Ting,Zhao Yanqiu,Zhou Xudong,Wang Leilei,Zhan Xiaohong. Effect of Energy Ratio Coefficient on Pore During Aluminum Alloy Laser-MIG Hybrid Welding[J]. Chinese Journal of Lasers, 2020, 47(11): 1102004

刘婷,赵艳秋,周旭东,王磊磊,占小红. 能量配比系数对铝合金激光-MIG复合焊接气孔的影响[J]. 中国激光, 2020, 47(11): 1102004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF