首页 > 论文 > Photonics Research > 8卷 > 9期(pp:1428-1434)

Integrated dispersion compensated mode-locked quantum dot laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Quantum dot lasers are excellent on-chip light sources, offering high defect tolerance, low threshold, low temperature variation, and high feedback insensitivity. Yet a monolithic integration technique combining epitaxial quantum dot lasers with passive waveguides has not been demonstrated and is needed for complex photonic integrated circuits. We present here, for the first time to our knowledge, a monolithc offset quantum dot integration platform that permits formation of a laser cavity utilizing both the robust quantum dot active region and the versatility of passive GaAs waveguide structures. This platform is substrate agnostic and therefore compatible with the quantum dot lasers directly grown on Si. As an illustration of the potential of this platform, we designed and fabricated a 20 GHz mode-locked laser with a dispersion-engineered on-chip waveguide mirror. Due to the dispersion compensation effect of the waveguide mirror, the pulse width of the mode-locked laser is reduced by a factor of 2.8.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.397175

所属栏目:Silicon Photonics

基金项目:Advanced Research Projects Agency-Energy10.13039/100006133;

收稿日期:2020-05-08

录用日期:2020-06-30

网络出版日期:2020-07-07

作者单位    点击查看

Zeyu Zhang:Electrical and Computer Engineering Department, University of California Santa Barbara, Santa Barbara, California 93106, USA;Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
Justin C. Norman:Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
Songtao Liu:Institute for Energy Efficiency, University of California, Santa Barbara, California 93106, USA
Aditya Malik:Electrical and Computer Engineering Department, University of California Santa Barbara, Santa Barbara, California 93106, USA
John E. Bowers:Electrical and Computer Engineering Department, University of California Santa Barbara, Santa Barbara, California 93106, USA;Materials Department, University of California Santa Barbara, Santa Barbara, California 93106, USA;Institute for Energy Efficiency, University of California, Santa Barbara, California 93106, USA

联系人作者:Zeyu Zhang(z_zhang@ucsb.edu)

备注:Advanced Research Projects Agency-Energy10.13039/100006133;

【1】Y. Arakawa and H. Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939-941(1982).

【2】T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara and Y. Arakawa. Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers. European Conference on Lasers and Electro-Optics. : Optical Society of America, (2011).

【3】D. Bimberg and U. W. Pohl. Quantum dots: promises and accomplishments. Mater. Today. 14, 388-397(2011).

【4】J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. Bowers and F. Grillot. Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor. Appl. Phys. Lett. 112, (2018).

【5】H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers and F. Grillot. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B. 35, 2780-2787(2018).

【6】Z. Zhang, D. Jung, J. C. Norman, W. W. Chow and J. E. Bowers. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE J. Sel. Top. Quantum Electron. 25, (2019).

【7】A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard and J. E. Bowers. Quantum dot lasers for silicon photonics. Photon. Res. 3, B1-B9(2015).

【8】J. C. Norman, D. Jung, Y. Wan and J. E. Bowers. Perspective: the future of quantum dot photonic integrated circuits. APL Photon. 3, (2018).

【9】S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds and I. Ross. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics. 10, 307-311(2016).

【10】D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, A. C. Gossard and J. E. Bowers. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photon. 5, 1094-1100(2017).

【11】Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu and J. Wu. Monolithic quantum-dot distributed feedback laser array on silicon. Optica. 5, 528-533(2018).

【12】S. Liu, X. Wu, D. Jung, J. C. Norman, M. Kennedy, H. K. Tsang, A. C. Gossard and J. E. Bowers. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica. 6, 128-134(2019).

【13】Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu and A. Torres. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica. 4, 940-944(2017).

【14】Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard and J. E. Bowers. Tunable quantum dot lasers grown directly on silicon. Optica. 6, 1394-1400(2019).

【15】Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau and J. E. Bowers. Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. Opt. Express. 25, 27715-27723(2017).

【16】S. Arafin and L. A. Coldren. Advanced InP photonic integrated circuits for communication and sensing. IEEE J. Sel. Top. Quantum Electron. 24, (2017).

【17】T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang and J. E. Bowers. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol. 34, 20-35(2016).

【18】C. Xiang, W. Jin, J. Guo, J. D. Peters, M. Kennedy, J. Selvidge, P. A. Morton and J. E. Bowers. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica. 7, 20-21(2020).

【19】G. Kurczveil, C. Zhang, A. Descos, D. Liang, M. Fiorentino and R. Beausoleil. On-chip hybrid silicon quantum dot comb laser with 14 error-free channels. 2018 IEEE International Semiconductor Laser Conference (ISLC). : IEEE, 1-2(2018).

【20】A. Y. Liu and J. Bowers. Photonic integration with epitaxial III-V on silicon. IEEE J. Sel. Top. Quantum Electron. 24, (2018).

【21】H. Zhao, S. Pinna, B. Song, L. Megalini, S. T. ?. Brunelli, L. A. Coldren and J. Klamkin. Indium phosphide photonic integrated circuits for free space optical links. IEEE J. Sel. Top. Quantum Electron. 24, (2018).

【22】W. W. Chow, M. Lorke and F. Jahnke. Will quantum dots replace quantum wells as the active medium of choice in future semiconductor lasers?. IEEE J. Sel. Top. Quantum Electron. 17, 1349-1355(2011).

【23】J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, F. Clayton, D. Hays and S. Pearton. Advanced selective dry etching of GaAs/AlGaAs in high density inductively coupled plasmas. J. Vac. Sci. Technol. A. 18, 1220-1224(2000).

【24】S. A. Moore, L. O’Faolain, M. A. Cataluna, M. B. Flynn, M. V. Kotlyar and T. F. Krauss. Reduced surface sidewall recombination and diffusion in quantum-dot lasers. IEEE Photon. Technol. Lett. 18, 1861-1863(2006).

【25】G. P. Agrawal and N. A. Olsson. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 25, 2297-2306(1989).

【26】K. Sato, A. Hirano and H. Ishii. Chirp-compensated 40-GHz mode-locked lasers integrated with electroabsorption modulators and chirped gratings. IEEE J. Sel. Top. Quantum Electron. 5, 590-595(1999).

【27】P. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. Logan, H. Presby, T. Erdogan, A. Sergent and K. Wecht. Packaged hybrid soliton pulse source results 70 terabit. km/sec soliton transmission. IEEE Photon. Technol. Lett. 7, 111-113(1995).

【28】A. Hou, R. Tucker and G. Eisenstein. Pulse compression of an actively modelocked diode laser using linear dispersion in fiber. IEEE Photon. Technol. Lett. 2, 322-324(1990).

【29】J. Wiesenfeld, M. Kuznetsov and A. Hou. Tunable, picosecond pulse generation using a compressed, modelocked laser diode source. IEEE Photon. Technol. Lett. 2, 319-321(1990).

【30】M. J. Strain, P. M. Stolarz and M. Sorel. Passively mode-locked lasers with integrated chirped bragg grating reflectors. IEEE J. Quantum Electron. 47, 492-499(2011).

【31】Y. Silberberg and P. Smith. Subpicosecond pulses from a mode-locked semiconductor laser. IEEE J. Quantum Electron. 22, 759-761(1986).

【32】T. Schrans, R. Salvatore, S. Sanders and A. Yariv. Subpicosecond (320 fs) pulses from CW passively mode-locked external cavity two-section multiquantum well lasers. Electron. Lett. 28, 1480-1482(1992).

【33】M. Bagnell, J. Davila-Rodriguez, A. Ardey and P. Delfyett. Dispersion measurements of a 1.3 μm quantum dot semiconductor optical amplifier over 120 nm of spectral bandwidth. Appl. Phys. Lett. 96, (2010).

【34】Y. Bidaux, K. A. Fedorova, D. A. Livshits, E. U. Rafailov and J. Faist. Investigation of the chromatic dispersion in two-section InAs/GaAs quantum-dot lasers. IEEE Photon. Technol. Lett. 29, 2246-2249(2017).

【35】D. Pastor, J. Capmany, D. Ortega, V. Tatay and J. Mart. Design of apodized linearly chirped fiber gratings for dispersion compensation. J. Lightwave Technol. 14, 2581-2588(1996).

【36】W. W. Chow, S. Liu, Z. Zhang, J. E. Bowers and M. Sargent. Multimode description of self-mode locking in a single-section quantum-dot laser. Opt. Express. 28, 5317-5330(2020).

引用该论文

Zeyu Zhang, Justin C. Norman, Songtao Liu, Aditya Malik, and John E. Bowers, "Integrated dispersion compensated mode-locked quantum dot laser," Photonics Research 8(9), 1428-1434 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF