首页 > 论文 > Photonics Research > 9卷 > 1期(pp:43-48)

On-chip reconfigurable mode converter based on cross-connected subwavelength Y-junctions

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

A novel power-efficient reconfigurable mode converter is proposed and experimentally demonstrated based on cross-connected symmetric Y-junctions assisted by thermo-optic phase shifters on a silicon-on-insulator platform. Instead of using conventional Y-junctions, subwavelength symmetric Y-junctions are utilized to enhance the mode splitting ability. The reconfigurable functionality can be realized by controlling the induced phase differences. Benefited from the cross-connected scheme, the number of heating electrodes can be effectively reduced, while the performance of the device is maintained. With only one-step etching, our fabricated device shows the average insertion losses and cross talks are less than 2.45 and -16.6 dB, respectively, measured with conversions between two arbitrary compositions of the first four TE modes over an observable 60 nm bandwidth. The converter is switchable and CMOS-compatible, and could be extended for more modes; hence, it can be potentially deployed for advanced and flexible mode multiplexing optical networks-on-chip.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.402940

所属栏目:Research Articles

基金项目:National Natural Science Foundation of China10.13039/501100001809; NSFC-STINT Joint China-Sweden Mobility Programme;

收稿日期:2020-07-15

录用日期:2020-11-06

网络出版日期:2020-11-06

作者单位    点击查看

Longhui Lu:School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Deming Liu:School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Max Yan:Department of Applied Physics, KTH Royal Institute of Technology, Stockholm 11419, Sweden
Minming Zhang:School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China

联系人作者:Minming Zhang(mmz@hust.edu.cn)

备注:National Natural Science Foundation of China10.13039/501100001809; NSFC-STINT Joint China-Sweden Mobility Programme;

【1】A. Shacham, K. Bergman and L. P. Carloni. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. 57, 1246-1260(2008).

【2】D. A. B. MillerD. A. B. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE. 97, 1166-1185(2009).

【3】W. Shipeng, F. Xianglian, G. Shiming, S. Yaocheng, D. Tingge and Y. Hui. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems. Opt. Lett. 42, 2802-2805(2017).

【4】J. Wang, S. He and D. Dai. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser Photonics Rev. 8, L18-L22(2014).

【5】L. W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen and M. Lipson. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 5, (2014).

【6】D. Dai and J. E. Bowers. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics. 3, 283-311(2014).

【7】W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu and M. Zhang. Ultra-compact mode (de)multiplexer based on subwavelength asymmetric Y-junction. Opt. Express. 26, 8162-8170(2018).

【8】D. DaiD. Dai. Silicon nanophotonic integrated devices for on-chip multiplexing and switching. J. Lightwave Technol. 35, 572-587(2017).

【9】L. Yang, T. Zhou, H. Jia, S. Yang, J. Ding, X. Fu and L. Zhang. General architectures for on-chip optical space and mode switching. Optica. 5, 180-187(2018).

【10】D. Dai, J. Wang and Y. Shi. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt. Lett. 38, 1422-1424(2013).

【11】Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou and C. Peucheret. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt. Express. 21, 10376-10382(2013).

【12】W. Chen, P. Wang and J. Yang. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt. Express. 21, 25113-25119(2013).

【13】D. Dai, Y. Tang and J. E. Bowers. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt. Express. 20, 13425-13439(2012).

【14】L. H. Frandsen, Y. Elesin, L. F. Frellsen, M. Mitrovic, Y. Ding, O. Sigmund and K. Yvind. Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material. Opt. Express. 22, 8525-8532(2014).

【15】H. Jia, T. Zhou, X. Fu, J. Ding and L. Yang. Inverse-design and demonstration of ultracompact silicon meta-structure mode exchange device. ACS Photonics. 5, 1833-1838(2018).

【16】Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu and J. Hu. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt. Lett. 43, 94-97(2018).

【17】H. Chen, H. Jia, J. Yang, Y. Tian and T. Wang. Ultra-compact switchable mode converter based on silicon and optical phase change material hybrid metastructure. Opt. Commun. 473, (2020).

【18】X. Han, Z. Zhang, J. Yang, H. Xiao and Y. Tian. On-chip switchable and reconfigurable optical mode exchange device using cascaded three-waveguide-coupling switches. Opt. Express. 28, 9552-9562(2020).

【19】C. Sun, Y. Yu, G. Chen and X. Zhang. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt. Lett. 41, 3257-3260(2016).

【20】Q. Huang, W. Jin and K. S. Chiang. Broadband mode switch based on a three-dimensional waveguide Mach-Zehnder interferometer. Opt. Lett. 42, 4877-4880(2017).

【21】L. B. Soldano and E. C. M. Pennings. Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightwave Technol. 13, 615-627(1995).

【22】R. Liu, L. Lu, P. Zhang, W. Chang and M. Zhang. Integrated dual-mode 3 dB power splitter based on multimode interference coupler. IEEE Photonics Technol. Lett. 32, 883-886(2020).

【23】N. Riesen, S. Gross, J. Love and M. J. Withford. Femtosecond direct-written integrated mode couplers. Opt. Express. 22, 29855-29861(2014).

【24】J. Dong, K. S. Chiang and W. Jin. Mode multiplexer based on integrated horizontal and vertical polymer waveguide couplers. Opt. Lett. 40, 3125-3128(2015).

【25】C. Sun, Y. Yu and X. Zhang. Ultra-compact waveguide crossing for a mode-division multiplexing optical network. Opt. Lett. 42, 4913-4916(2017).

【26】L. Lu, D. Liu, M. Yan and M. Zhang. Subwavelength adiabatic multimode Y-junctions. Opt. Lett. 44, 4729-4732(2019).

【27】T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh and M. Koshiba. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Lightwave Technol. 30, 2421-2426(2012).

【28】G. T. Reed, G. Mashanovich, F. Y. Gardes and D. J. Thomson. Silicon optical modulators. Nat. Photonics. 4, 518-526(2010).

【29】V. Sorianello, M. Midrio, G. Contestabile, I. Asselberghs, J. Van Campenhout, C. Huyghebaert, I. Goykhman, A. K. Ott, A. C. Ferrari and M. Romagnoli. Graphene-silicon phase modulators with gigahertz bandwidth. Nat. Photonics. 12, 40-44(2018).

引用该论文

Longhui Lu, Deming Liu, Max Yan, and Minming Zhang, "On-chip reconfigurable mode converter based on cross-connected subwavelength Y-junctions," Photonics Research 9(1), 43-48 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF