首页 > 论文 > 中国激光 > 47卷 > 9期(pp:905001--1)

大遮拦比薄管激光环域像差校正方法

Method for Annular Aberration Correction of Large-Aperture Thin-Wall Tube Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对高功率大遮拦比窄环薄管激光的环域像差校正需求,提出一种基于新型环形边缘驱动变形镜的环域像差校正方法。利用环形边缘驱动变形镜构建自适应光学闭环控制系统,以实现对高功率大遮拦比窄环薄管激光波前的校正。使用新型的环形边缘驱动变形镜来验证所提方法对单一环域低阶像差的校正能力,并分析其对大遮拦比薄管激光的校正效果。实验结果表明,所提的环域像差校正方法能够有效校正大遮拦比窄环薄管激光的波前畸变,显著提高光束质量。

Abstract

Aiming at the requirements of high-power large-blocking ratio narrow-ring thin-tube lasers for ring aberration correction, a new ring-shaped edge-driven deformable mirror-based method for ring aberration correction is proposed herein. An adaptive optics closed-loop control system is constructed using the ring-shaped edge-driven deformable mirror to correct the wavefront of the high-power, large-blocking, thin-tube laser. A novel ring-shaped edge-driven deformable mirror is used to verify the correction ability of the proposed method for single-circular low-order aberrations, and analyze its correction effect on thin tube lasers with a large obstruction ratio. Experimental results reveal that the proposed ring aberration correction method can effectively correct the wavefront distortion of a thin tube laser with a large obstruction ratio and a narrow ring, significantly improving the beam quality.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:TN248; O439

DOI:10.3788/CJL202047.0905001

所属栏目:光束传输与控制

基金项目:四川省科技计划资助、科技部创新人才推进计划重点领域创新团队项目、中国科学院自适应光学重点实验室基金;

收稿日期:2020-02-27

修改稿日期:2020-04-26

网络出版日期:2020-09-01

作者单位    点击查看

余江川:四川大学电子信息学院, 四川 成都 610064
田博宇:四川大学电子信息学院, 四川 成都 610064
钟哲强:四川大学电子信息学院, 四川 成都 610064
张彬:四川大学电子信息学院, 四川 成都 610064
张小民:中国工程物理研究院, 四川 绵阳 621999

联系人作者:张彬(zhangbinff@sohu.com)

备注:四川省科技计划资助、科技部创新人才推进计划重点领域创新团队项目、中国科学院自适应光学重点实验室基金;

【1】Wittrock U, Weber H, Eppich B. Inside-pumped Nd∶YAG tube laser [J]. Optics Letters. 1991, 16(14): 1092-1094.

【2】Savich M. High power tube solid-state laser with zigzag propagation of pump and laser beam [J]. Proceedings of SPIE. 2015, 9342: 934216.

【3】Li N, Zhang W Q, Liu Y, et al. Yb∶YAG surface gain slab laser amplifier [J]. Chinese Journal of Lasers. 2018, 45(11): 1101003.
李宁, 张伟桥, 刘洋, 等. Yb∶YAG表层增益板条激光放大器的研究 [J]. 中国激光. 2018, 45(11): 1101003.

【4】Li M, Zhou T J, Xu L, et al. Theoreticaldesign and experimental research on high power Yb∶YAG ceramic slab laser amplifier [J]. Acta Optica Sinica. 2018, 38(1): 0114001.
李密, 周唐建, 徐浏, 等. 高功率Yb∶YAG陶瓷板条激光放大器的理论设计与实验研究 [J]. 光学学报. 2018, 38(1): 0114001.

【5】Lubeigt W, Poland S P, Valentine G J, et al. Search-based active optic systems for aberration correction in time-independent applications [J]. Applied Optics. 2010, 49(3): 307-314.

【6】Ye Z B, Wang Y, Zhao Z G, et al. Method to improve beam quality by compensating spherical aberrations in master oscillator power amplifier laser systems [J]. Applied Optics. 2014, 53(33): 7963-7967.

【7】Zhang X, Hu Z Q, Yang W T, et al. Aberration influence and active compensation on laser mode properties for asymmetric folded resonators [J]. Optics & Laser Technology. 2017, 94: 199-207.

【8】Shin J S, Cha Y H, Kim Y, et al. Design of pump beam delivering optical system and doped YAG length to minimize the wavefront distortion in a high-power Nd∶YAG zigzag slab laser [J]. Optical Engineering. 2017, 56(1): 016109.

【9】Wang J T, Tong L X, Xu L, et al. 5 kW end-pumped Nd∶YAG slab lasers and beam quality improvement [J]. Chinese Journal of Lasers. 2018, 45(1): 0101003.
王君涛, 童立新, 徐浏, 等. 5 kW Nd∶YAG端面抽运板条激光器及其光束质量提升 [J]. 中国激光. 2018, 45(1): 0101003.

【10】Kasprzack M, Canuel B, Cavalier F, et al. Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams [J]. Applied Optics. 2013, 52(12): 2909-2916.

【11】Sun L C, Huang L, Yan M, et al. Intracavity deformable mirror for beam quality improvement and power enhancement of a passively Q-switched laser [J]. Optics Express. 2018, 26(7): 8594-8608.

【12】Sun C, Wang D E, Deng X W, et al. Numerical analysis of a novel two-stage enlargement and adaptive correction approach for the annular aberration compensation [J]. Optics Express. 2019, 27(18): 25205-25227.

【13】Yang Z F, Li W L, Peng T R, et al. Performance of closed-loop correction with hysteresis compensation for unimorph deformable mirror [J]. Acta Optica Sinica. 2019, 39(5): 0522001.
杨宗峰, 李文来, 彭泰然, 等. 具有迟滞补偿的单压电变形镜的闭环校正性能 [J]. 光学学报. 2019, 39(5): 0522001.

【14】Shao J, Li Q, Yu H B. Simulation and driving performance of AIN-based MEMS deformable mirror [J]. Laser & Optoelectronics Progress. 2018, 55(8): 082204.
邵健, 李琦, 余洪斌. 基于AlN的MEMS变形镜仿真及驱动性能研究 [J]. 激光与光电子学进展. 2018, 55(8): 082204.

【15】Lema?tre G R. Active optics: vase or meniscus multimode mirrors and degenerated monomode configurations [J]. Meccanica. 2005, 40(3): 233-249.

【16】Hugot E, Lema?tre G R, Ferrari M. Active optics: single actuator principle and angular thickness distribution for astigmatism compensation by elasticity [J]. Applied Optics. 2008, 47(10): 1401-1409.

【17】Hugot E, Ferrari M, El Hadi K, et al. Active optics: stress polishing of toric mirrors for the VLT SPHERE adaptive optics system [J]. Applied Optics. 2009, 48(15): 2932-2941.

【18】Laslandes M, Hugot E, Ferrari M. Active optics: deformation systems compensating for optical aberrations with a minimum number of actuators [J]. Proceedings of SPIE. 2012, 8450: 84500J.

【19】Samuel G L, Shunmugam M S. Evaluation of circularity from coordinate and form datausing computational geometric techniques [J]. Precision Engineering. 2000, 24(3): 251-263.

【20】Toussaint G T. Computing largest empty circles with location constraints [J]. International Journal of Computer & Information Sciences. 1983, 12(5): 347-358.

【21】Liu L H, Long Y, Cao F, et al. Simulation and calculation of low order aberration corrected by four-arm edge-driven deformable mirror [J]. Chinese Journal of Lasers. 2015, 42(10): 1012001.
刘李辉, 龙吟, 曹芬, 等. 4臂边缘驱动变形镜校正低阶像差的仿真计算 [J]. 中国激光. 2015, 42(10): 1012001.

【22】Liu L H, Tan B T, Mai C J. Structural parameter design and performance simulation of 241-element deformable mirror [J]. Laser & Optoelectronics Progress. 2019, 56(9): 090101.
刘李辉, 谭碧涛, 麦灿基. 241单元变形镜结构参数设计及性能仿真 [J]. 激光与光电子学进展. 2019, 56(9): 090101.

【23】-01-05) https:∥www.researchgate.net/publication/265435895_Theory_of_Plates_and_ [2020-02-26]. Shells. 1940.

【24】Harvey J E, Callahan G M. Wavefront error compensation capabilities of multi-actuator deformable mirrors [J]. Proceedings of SPIE. 1978, 141: 50-57.

【25】Zhao F, Wang P, Gong Y, et al. Optimal design for the deformable mirror supporting system . [C]∥2009 Conference on Lasers & Electro Optics & the Pacific Rim Conference on Lasers and Electro-Optics, August 30-September 3, 2009, Shanghai, China. New York: IEEE. 2009, 863-864.

【26】?etin?rgü E. A new method to experimentally determine the thermal expansion coefficient, Poisson''''s ratio and Young''''s modulus of thin films [J]. Journal of Materials Science. 2009, 44(8): 2167-2170.

【27】Chen X D, Zheng L G, Luo X, et al. A deformable mirror with 9 actuated points for low order aberration correction-design and experiments [J]. Acta Optica Sinica. 2012, 32(3): 0322001.
陈新东, 郑立功, 罗霄, 等. 校正低阶像差的9点促动变形镜: 设计与实验 [J]. 光学学报. 2012, 32(3): 0322001.

【28】Ares M, Royo S. Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction [J]. Applied Optics. 2006, 45(27): 6954-6964.

【29】Peng A H, Ye H W, Li X Y. 2D lateral shearing wave-front reconstruction based on decoupling difference zernike future defining coefficient method [J]. Acta Optica Sinica. 2011, 31(8): 0801001.
彭爱华, 叶红卫, 李新阳. 基于解耦差分泽尼克待定系数法的二维横向剪切波面重建算法 [J]. 光学学报. 2011, 31(8): 0801001.

【30】Tian B Y, Zhong Z Q, Huang C, et al. Analysis on beam quality of solid-state tube MOPA system with zigzag beam path [J]. IEEE Photonics Journal. 2019, 11(2): 18526905.

【31】Allen L N, Romig H W. Advanced optical manufacturing and testing [J]. Proceedings of SPIE. 1990, 1333: 22-33.

引用该论文

Yu Jiangchuan,Tian Boyu,Zhong Zheqiang,Zhang Bin,Zhang Xiaomin. Method for Annular Aberration Correction of Large-Aperture Thin-Wall Tube Lasers[J]. Chinese Journal of Lasers, 2020, 47(9): 0905001

余江川,田博宇,钟哲强,张彬,张小民. 大遮拦比薄管激光环域像差校正方法[J]. 中国激光, 2020, 47(9): 0905001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF