首页 > 论文 > Photonics Research > 8卷 > 10期(pp:1634-1641)

High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration [Cover Paper]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Silicon nitride (Si3N4)-on-SiO2 attracts increasing interest in integrated photonics owing to its low propagation loss and wide transparency window, extending from 400 nm to 2350 nm. Scalable integration of active devices such as amplifiers and lasers on the Si3N4 platform will enable applications requiring optical gain and a much-needed alternative to hybrid integration, which suffers from high cost and lack of high-volume manufacturability. We demonstrate a high-gain optical amplifier in Al2O3:Er3+ monolithically integrated on the Si3N4 platform using a double photonic layer approach. The device exhibits a net Si3N4-to-Si3N4 gain of 18.1±0.9 dB at 1532 nm, and a broadband gain operation over 70 nm covering wavelengths in the S-, C- and L-bands. This work shows that rare-earth-ion-doped materials and in particular, rare-earth-ion-doped Al2O3, can provide very high net amplification for the Si3N4 platform, paving the way to the development of different active devices monolithically integrated in this passive platform.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.401055

所属栏目:Integrated Optics

基金项目:Stichting voor de Technische Wetenschappen10.13039/501100003958; Optical Sciences Group at University of Twente;

收稿日期:2020-06-29

录用日期:2020-08-19

网络出版日期:2020-08-20

作者单位    点击查看

Jinfeng Mu:Optical Sciences Group, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
Meindert Dijkstra:Optical Sciences Group, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
Jeroen Korterik:Optical Sciences Group, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
Herman Offerhaus:Optical Sciences Group, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
Sonia M. García-Blanco:Optical Sciences Group, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands

联系人作者:Jinfeng Mu(jinfeng.mu@icloud.com)

备注:Stichting voor de Technische Wetenschappen10.13039/501100003958; Optical Sciences Group at University of Twente;

【1】F. Kish, V. Lal, P. Evans, S. W. Corzine, M. Ziari, T. Butrie, M. Reffle, H. S. Tsai, A. Dentai, J. Pleumeekers, M. Missey, M. Fisher, S. Murthy, R. Salvatore, P. Samra, S. Demars, N. Kim, A. James, A. Hosseini, P. Studenkov, M. Lauermann, R. Going, M. Lu, J. Zhang, J. Tang, J. Bostak, T. Vallaitis, M. Kuntz, D. Pavinski, A. Karanicolas, B. Behnia, D. Engel, O. Khayam, N. Modi, M. R. Chitgarha, P. Mertz, W. Ko, R. Maher, J. Osenbach, J. T. Rahn, H. Sun, K. T. Wu, M. Mitchell and D. Welch. System-on-chip photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 24, (2018).

【2】H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong and R. T. Chen. Recent advances in silicon-based passive and active optical interconnects. Opt. Express. 23, 2487-2511(2015).

【3】E. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P. Tern and T. Liow. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron. 20, 405-416(2014).

【4】J. C. Hulme, J. K. Doylend and J. E. Bowers. Widely tunable Vernier ring laser on hybrid silicon. Opt. Express. 21, 19718-19722(2013).

【5】E. Kasper, M. Kittler, M. Oehme and T. Arguirov. Germanium tin: silicon photonics toward the mid-infrared [Invited]. Photon. Res. 1, 69-76(2013).

【6】P. Mu?oz, G. Micó, L. Bru, D. Pastor, D. Pérez, J. Doménech, J. Fernández, R. Ba?os, B. Gargallo, R. Alemany, A. Sánchez, J. Cirera, R. Mas and C. Domínguez. Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications. Sensors. 17, (2017).

【7】D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse and C. Roeloffzen. Silicon nitride in silicon photonics. Proc. IEEE. 106, 2209-2231(2018).

【8】C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla and K.-J. Boller. Silicon nitride microwave photonic circuits. Opt. Express. 21, 22937-22961(2013).

【9】L. Gaeta, M. Lipson and T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics. 13, 158-169(2019).

【10】Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens and R. Baets. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited]. Photon. Res. 3, B47-B59(2015).

【11】C. Taballione, T. A. W. Wolterink, J. Lugani, A. Eckstein, B. A. Bell, R. Grootjans, I. Visscher, D. Geskus, C. G. H. Roeloffzen, J. J. Renema, I. A. Walmsley, P. W. H. Pinkse and K.-J. Boller. 8×8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express. 27, 26842-26857(2019).

【12】V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen and M. R. Watts. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett. 42, 21-24(2017).

【13】B. Stern, X. Ji, A. Dutt and M. Lipson. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett. 42, 4541-4544(2017).

【14】Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot and K. J. Boller. Optically integrated InP-Si3N4 hybrid laser. IEEE Photonics J. 8, (2016).

【15】Y. Lin, C. Browning, R. B. Timens, D. H. Geuzebroek, C. G. H. Roeloffzen, M. Hoekman, D. Geskus, R. M. Oldenbeuving, R. G. Heideman, Y. Fan, K. J. Boller and L. P. Barry. Characterization of hybrid InP-triplex photonic integrated tunable lasers based on silicon nitride (Si3N4/SiO2) microring resonators for optical coherent system. IEEE Photonics J. 10, (2018).

【16】C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. W?rhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla and K. J. Boller. Low-loss Si3N4 triplex optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron. 24, (2018).

【17】O. de Beeck, B. Haq, L. Elsinger, A. Gocalinska, E. Pelucchi, B. Corbett, G. Roelkens and B. Kuyken. Heterogeneous III-V on silicon nitride amplifiers and lasers via microtransfer printing. Optica. 7, 386-393(2020).

【18】M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton and D. J. Blumenthal. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform. Opt. Lett. 38, 4825-4828(2013).

【19】J. D. B. Bradley, E. S. Hosseini, , Z. Su, T. N. Adam, G. Leake, D. Coolbaugh and M. R. Watts. Monolithic erbium- and ytterbium-doped microring lasers on silicon chips. Opt. Express. 22, 12226-12237(2014).

【20】G. Singh, , J. D. B. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh and M. R. Watts. Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities. Opt. Lett. 41, 1189-1192(2016).

【21】, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley and M. R. Watts. Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform. Opt. Express. 25, 13705-13713(2017).

【22】N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco and M. R. Watts. Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform. Opt. Express. 26, 16200-16211(2018).

【23】J. R?nn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. S?yn?tjoki, H. Lipsanen, L. Vivien, E. Cassan and Z. Sun. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nat. Commun. 10, (2019).

【24】R. C. Figueiredo, N. S. Ribeiro, A. M. O. Ribeiro, C. M. Gallep and E. Conforti. Hundred-picoseconds electro-optical switching with semiconductor optical amplifiers using multi-impulse step injection current. J. Lightwave Technol. 33, 69-77(2015).

【25】M. PollnauM. Pollnau. Rare-earth-ion-doped channel waveguide lasers on silicon. IEEE J. Sel. Top. Quantum Electron. 21, 414-425(2015).

【26】R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov and R. Moncorgé. Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW. Opt. Express. 18, 1553-1568(2010).

【27】J. D. B. Bradley, M. Costa de Silva, M. Gay, L. Bramerie, A. Driessen, K. W?rhoff, J.-C. Simon and M. Pollnau. 170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon. Opt. Express. 17, 22201-22208(2009).

【28】D. Geskus, S. Aravazhi, S. M. García-Blanco and M. Pollnau. Giant optical gain in a rare-earth-ion-doped microstructure. Adv. Mater. 24, OP19-OP22(2012).

【29】M. A. Sefunc, F. B. Segerink and S. M. García-Blanco. High index contrast passive potassium double tungstate waveguides. Opt. Mater. Express. 8, 629-638(2018).

【30】A. Aghajani, G. S. Murugan, N. P. Sessions, V. Apostolopoulos and J. S. Wilkinson. Waveguide lasers in ytterbium-doped tantalum pentoxide on silicon. Opt. Lett. 40, 2549-2552(2015).

【31】H. C. Frankis, H. M. Mbonde, D. B. Bonneville, C. Zhang, R. Mateman, A. Leinse and J. D. B. Bradley. Erbium-doped TeO2-coated Si3N4 waveguide amplifiers with 5 dB net gain. Photon. Res. 8, 127-134(2020).

【32】K. M. Kiani, H. C. Frankis, H. M. Mbonde, R. Mateman, A. Leinse, A. P. Knights and J. D. B. Bradley. Thulium-doped tellurium oxide waveguide amplifier with 7.6 dB net gain on a silicon nitride chip. Opt. Lett. 44, 5788-5791(2019).

【33】H. Penilla, L. F. Devia-Cruz, M. A. Duarte, C. L. Hardin, Y. Kodera and J. E. Garay. Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials. Light Sci. Appl. 7, (2018).

【34】J. D. B. Bradley and M. Pollnau. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photonics Rev. 5, 368-403(2011).

【35】N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen and M. R. Watts. Broadband 2-μm emission on silicon chips: monolithically integrated holmium lasers. Opt. Express. 26, 2220-2230(2018).

【36】S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. W?rhoff, J. L. Herek, S. M. García-Blanco and M. Pollnau. Erbium-doped spiral amplifiers with 20 dB of net-gain on silicon. Opt. Express. 22, 25993-26004(2014).

【37】E. H. Bernhardi, H. A. G. M. van Wolferen, L. Agazzi, M. R. H. Khan, C. G. H. Roeloffzen, K. W?rhoff, M. Pollnau and R. M. de Ridder. Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon. Opt. Lett. 35, 2394-2396(2010).

【38】J. Mu, M. Dijkstra, Y. Yong, M. de Goede, L. Chang and S. M. García-Blanco. Monolithic integration of Al2O3 and Si3N4 toward double-layer active-passive platform. IEEE J. Sel. Top. Quantum Electron. 25, (2019).

【39】J. Mu, M. Dijkstra and S. M. García-Blanco. Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4. IEEE Photonics Technol. Lett. 31, 771-774(2019).

【40】J. Mu, S. A. Vázquez-Córdova, M. A. Sefunc, Y.-S. Yong and S. M. García-Blanco. A low-loss and broadband MMI-based multi/demultiplexer in Si3N4/SiO2 technology. J. Lightwave Technol. 34, 3603-3609(2016).

【41】J. D. B. Bradley, L. Agazzi, D. Geskus, F. Ay, K. W?rhoff and M. Pollnau. Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon. J. Opt. Soc. Am. B. 27, 187-196(2010).

【42】Y. Okamura, S. Yoshinaka and S. Yamamoto. Measuring mode propagation losses of integrated optical waveguides: a simple method. Appl. Opt. 22, 3892-3894(1983).

引用该论文

Jinfeng Mu, Meindert Dijkstra, Jeroen Korterik, Herman Offerhaus, and Sonia M. García-Blanco, "High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration," Photonics Research 8(10), 1634-1641 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF