首页 > 论文 > 中国激光 > 47卷 > 10期(pp:1002002--1)

大气等离子体电极结构对碳化硅去除函数的影响

Effects of Atmospheric Pressure Plasma Electrode Structure on Silicon Carbide Removal Function

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

大气等离子体抛光(APPP)是一种非接触式的化学刻蚀加工方法,具有效率高、成本低、精度高等优点,可以作为碳化硅(SiC)加工的一种有效手段。基于APPP气体放电理论和尖端电场畸变效应,分析了电极结构对等离子体放电稳定性和去除函数的影响;从理论上推导了APPP加工SiC的最优电极尖端半径,并进行了实验验证。在最优电极的基础上,系统分析了不同加工参数下APPP刻蚀SiC的去除函数的特性。通过优化电极结构和工艺参数,对直径为50 mm、初始面形误差峰谷(PV)值为475.846 nm、初始面形误差均方根(RMS)为124.771 nm的无压烧结碳化硅(S-SiC)进行加工,加工21 min后,S-SiC工件的PV值降低至103.510 nm,RMS值降低至12.148 nm,RMS收敛率达90.26%。实验结果显示:APPP加工SiC比大多数传统加工方法的效率更高。

Abstract

Atmospheric pressure plasma polishing (APPP), as a noncontact chemical etching processing method, exhibits advantages of high efficiency, low cost, and high precision. Therefore, it can be used as an effective method to process silicon carbide. Based on the APPP gas discharge theory and tip electric field distortion effect, the effect of the APPP electrode structure on the plasma discharge stability and removal function is analyzed herein. Furthermore, the optimal electrode tip radius for APPP to process SiC is theoretically derived, finally verifying the optimal radius experimentally. After selecting the electrode, we systematically analyze the removal function characteristics of APPP in etching SiC under different processing parameters. By optimizing the electrode structure and process parameters, the pressureless sintered silicon carbide (S-Si) with a diameter of 50 mm, an initial surface profile error peak-valley value (PV) of 475.846 nm, and initial surface profile error root-mean-square (RMS) of 124.771 nm was processed. After processing for 21 min, the PV and RMS values of the S-SiC are reduced to 103.510 nm and 12.148 nm, respectively, and the RMS convergence rate is 90.26%. Experiments reveal that processing SiC using APP is more efficient than most traditional processing methods.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/CJL202047.1002002

所属栏目:激光制造

收稿日期:2020-04-09

修改稿日期:2020-05-28

网络出版日期:2013-10-01

作者单位    点击查看

宋力:中国科学院上海光学精密机械研究所精密光学制造与检测中心, 上海 201800中国科学院大学材料科学与光电技术学院, 北京 100049
顿爱欢:中国科学院上海光学精密机械研究所精密光学制造与检测中心, 上海 201800
王哲:中国科学院上海光学精密机械研究所精密光学制造与检测中心, 上海 201800
吴伦哲:中国科学院上海光学精密机械研究所精密光学制造与检测中心, 上海 201800
彭冰:中国科学院上海光学精密机械研究所精密光学制造与检测中心, 上海 201800中国科学院大学材料科学与光电技术学院, 北京 100049
徐学科:中国科学院上海光学精密机械研究所精密光学制造与检测中心, 上海 201800

联系人作者:徐学科(xuxk@siom.ac.cn)

【1】Fan D. Study on the polishing mechanism of silicon carbide optical surface [J]. Laser & Optoelectronics Progress. 2012, 49(2): 022202.
范镝. 碳化硅光学表面抛光机理研究 [J]. 激光与光电子学进展. 2012, 49(2): 022202.

【2】Hu G X, Cai X, Rong Y H. Fundamentals of materials science[M]. Shanghai: Shanghai Jiao Tong University Press, 2010, 23-46.
胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010, 23-46.

【3】Wang X, Zhang F. Experimental study of fabricating SiC mirror in full aperture with optimized fixed abrasive polishing pad [J]. Chinese Optics Letters. 2014, 12(s1): s12203.

【4】Deng H, Liu N, Endo K, et al. Atomic-scale finishing of carbon face of single crystal SiC by combination of thermal oxidation pretreatment and slurry polishing [J]. Applied Surface Science. 2018, 434: 40-48.Deng H, Liu N, Endo K, et al. Atomic-scale finishing of carbon face of single crystal SiC by combination of thermal oxidation pretreatment and slurry polishing [J]. Applied Surface Science. 2018, 434: 40-48.

【5】Deng H, Yamamura K. Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing [J]. CIRP Annals. 2013, 62(1): 575-578.Deng H, Yamamura K. Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing [J]. CIRP Annals. 2013, 62(1): 575-578.

【6】Zhang J F, Wang B, Dong S. A new development of ultra-smooth surface machining technology [J]. Optical Technique. 2007, 33(S1): 150-154.
张巨帆, 王波, 董申. 超光滑表面加工方法的新进展 [J]. 光学技术. 2007, 33(S1): 150-154.

【7】Zhang J F, Wang B, Dong S. Application of atmospheric pressure plasma polishing method in machining of silicon ultra-smooth surface [J]. Optics and Precision Engineering. 2007, 15(11): 1749-1755.
张巨帆, 王波, 董申. 大气等离子体抛光技术在超光滑硅表面加工中的应用 [J]. 光学精密工程. 2007, 15(11): 1749-1755.

【8】Zhao P J. Study of removal rate function of room temperature atmospheric plasma polishing [D]. Harbin: Harbin Institute of Technology. 2009, 9-12.
赵培君. 常温大气等离子抛光去除速度函数的研究 [D]. 哈尔滨: 哈尔滨工业大学. 2009, 9-12.

【9】Shen X, Deng H, Zhang X, et al. Preliminary study on atmospheric-pressure plasma-based chemical dry figuring and finishing of reaction-sintered silicon carbide [J]. Optical Engineering. 2016, 55(10): 105102.

【10】Sun R, Yang X, Ohkubo Y, et al. Optimization of gas composition used in plasma chemical vaporization machining for figuring of reaction-sintered silicon carbide with low surface roughness [J]. Scientific Reports. 2018, 8(1): 2376.

【11】Su X. Design and study on the atmospheric pressure plasma jet torch [D]. Harbin: Harbin Institute of Technology. 2016, 12-18.
苏星. 大气等离子体射流炬设计及性能研究 [D]. 哈尔滨: 哈尔滨工业大学. 2016, 12-18.

【12】Shi B L. Study on key techniques in arc-enhanced plasma machining for silicon carbide mirrors [D]. Changsha: National University of Defense Technology. 2016, 125-131.
史宝鲁. SiC反射镜电弧增强等离子体加工关键技术研究 [D]. 长沙: 国防科学技术大学. 2016, 125-131.

【13】Wang X. Study on the fabrication of the high accuracy optical aspherical mirror with atmospheric pressure inductively coupled plasma chemical etching technology [J]. Chinese Journal of Lasers. 2014, 41(8): 0816001.
王旭. 常压电感耦合等离子体工艺用于加工光学材料的去除函数研究 [J]. 中国激光. 2014, 41(8): 0816001.

【14】Xu X J, Zhu D C. Gas discharge physics[M]. Shanghai: Fudan University Press, 1996.
徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996.

【15】Choi J H, Lee T I, Han I, et al. Investigation of the transition between glow and streamer discharges in atmospheric air [J]. Plasma Sources Science and Technology. 2006, 15(3): 416-420.Choi J H, Lee T I, Han I, et al. Investigation of the transition between glow and streamer discharges in atmospheric air [J]. Plasma Sources Science and Technology. 2006, 15(3): 416-420.

【16】Ye H H. Numerical study of pulsed dielectric barrier discharge at atmospheric pressure in the needle-plane electrode configuration [D]. Dalian: Dalian University of Technology. 2014, 18-22.
叶换换. 针板电极下大气压脉冲介质阻挡放电模拟研究 [D]. 大连: 大连理工大学. 2014, 18-22.

【17】Shao T, Yan P. Atmospheric pressure gas discharge and plasma application[M]. Beijing: Science Press, 2019, 359-367.
卲涛, 严萍. 大气压气体放电及其等离子体应用[M]. 北京: 科学出版社, 2019, 359-367.

【18】Yan Y. Chan-Park M B, Yue C. CF4 plasma treatment of poly(dimethylsiloxane): effect of fillers and its application to high-aspect-ratio UV embossing [J]. Langmuir. 2005, 21(19): 8905-8912.

【19】Li Y R, Li X C, Jia P Y, et al. Optical diagnosis on plasma parameters of a plasma plume generated by dielectric barrier discharge [J]. Acta Optica Sinica. 2017, 37(4): 0430002.
李亚茹, 李雪辰, 贾鹏英, 等. 介质阻挡放电羽的等离子体参数光学诊断 [J]. 光学学报. 2017, 37(4): 0430002.

引用该论文

Song Li,Dun Aihuan,Wang Zhe,Wu Lunzhe,Peng Bing,Xu Xueke. Effects of Atmospheric Pressure Plasma Electrode Structure on Silicon Carbide Removal Function[J]. Chinese Journal of Lasers, 2020, 47(10): 1002002

宋力,顿爱欢,王哲,吴伦哲,彭冰,徐学科. 大气等离子体电极结构对碳化硅去除函数的影响[J]. 中国激光, 2020, 47(10): 1002002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF