首页 > 论文 > 中国激光 > 47卷 > 9期(pp:904003--1)

基于非线性拟合的激光三角位移传感器标定方法

Calibration of Laser Triangular Displacement Sensor Based on Nonlinear Fitting

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为解决基于位置敏感器件(PSD)的激光三角位移传感器在复杂光电噪声干扰下的精密标定问题,提出一种多元自适应卡尔曼滤波(MAKF)与非均匀B样条曲线拟合的联合标定方法。通过分析测量原理和计算方法,对位移传感器的非线性特性进行了详细说明,进而提出应用曲线拟合的方法进行非线性标定。针对曲线拟合的特点,设计了一种多元自适应卡尔曼预处理算法用于滤除光电噪声干扰;通过非均匀的节点矢量划分,构建了B样条曲线拟合模型,进一步提高了标定系统的精度。在实际工况下进行了标定实验,实验结果表明,该曲线拟合标定方法能够完成激光位移传感器的高精度标定,其定位精度为0.7%,平均测量误差可达0.012 mm,标定均方误差约为2.12×10 -5 mm 2。

Abstract

For the precise calibration of laser triangular displacement detection based on position sensitive devices (PSD) with the influence of complex photoelectric noise, a joint calibration method based on multivariate adaptive Kalman filter (MAKF) and non-uniform B-spline is proposed. The nonlinear characteristic of displacement sensor is shown in detail by analyzing the measurement principle and computing methods. Aiming at the nonlinear problem, the method of curve fitting for the calibration is given. In consideration of the characteristic of curve fitting, in this paper, a preprocess method called MAKF is proposed for the photoelectric noise elimination. Then, the B-spline curve fitting model is built by dividing the knot vector nonuniformly, which makes the precision of the sensor further promoted. Calibration experiments are carried out under actual working conditions. The experimental results show that the curve fitting calibration method can complete the high-precision calibration of the laser displacement sensor. The positioning accuracy is 0.7%, the average measurement error can reach 0.012 mm, and the calibration mean square error is 2.12×10 -5 mm 2.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP202.2

DOI:10.3788/CJL202047.0904003

所属栏目:测量与计量

基金项目:国家重点研发计划、国家自然科学基金、辽宁省自然科学基金项目;

收稿日期:2020-03-25

修改稿日期:2020-04-23

网络出版日期:2020-09-01

作者单位    点击查看

崔昊:中国科学院沈阳自动化研究所智能检测与装备研究室, 辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110169中国科学院大学, 北京 100049
郭锐:中国科学院沈阳自动化研究所智能检测与装备研究室, 辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110169
李兴强:中国科学院沈阳自动化研究所智能检测与装备研究室, 辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110169
丛日刚:中国科学院沈阳自动化研究所智能检测与装备研究室, 辽宁 沈阳 110016中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110169

联系人作者:李兴强(lixingqiang@sia.cn)

备注:国家重点研发计划、国家自然科学基金、辽宁省自然科学基金项目;

【1】Gao Y E, Liu W, Lü S M, et al. Six-degree-of-freedom displacement and angle measurement system based on two-dimensional position-sensitive detector [J]. Optics and Precision Engineering. 2018, 26(12): 2930-2939.
高玉娥, 刘伟, 吕世猛, 等. 基于位置敏感探测器的六自由度精密位姿测量系统 [J]. 光学精密工程. 2018, 26(12): 2930-2939.

【2】Zhang C, Sun S L, Shi W X, et al. Linear CCD camera System for industry measurement and its noise evaluation [J]. Optics and Precision Engineering. 2016, 24(10): 2532-2539.

【3】Wang W. Busch-Vishniac I J. The linearity and sensitivity of lateral effect position sensitive devices-an improved geometry [J]. IEEE Transactions on Electron Devices. 1989, 36(11): 2475-2480.

【4】Dutta A K, Hatanaka Y. A study of the transient response of position-sensitive detectors [J]. Solid-State Electronics. 1989, 32(6): 485-492.

【5】Ivan I A, Ardeleanu M, Laurent G J. High dynamics and precision optical measurement using a position sensitive detector (PSD) in reflection-mode: application to 2D object tracking over a Smart Surface [J]. Sensors. 2012, 12(12): 16771-16784.

【6】Kurakado M, Taniguchi K. Position-sensitive superconductor detectors [J]. Journal of Instrumentation. 2016, 11(12): C12071.

【7】Javadi M, Gholami M, Torbatiyan H, et al. Hybrid organic/inorganic position-sensitive detectors based on PEDOT: PSS/n-Si [J]. Applied Physics Letters. 2018, 112(11): 113302.

【8】Das S, Saha A. Laser beam position-dependent PSD-based calibrated self-vibration compensated noncontact vibration measurement system [J]. IEEE Transactions on Instrumentation and Measurement. 2019, 68(9): 3308-3320.

【9】Qu L G, Liu J G, Deng Y S, et al. Analysis and adjustment of positioning error of PSD system for mobile SOF-FTIR [J]. Sensors. 2019, 19(23): 5081.

【10】Chen H, Zhu J G, Xue B. Impact of rough surface scattering characteristics to measurement accuracy of laser displacement sensor based on position sensitive detector [J]. Chinese Journal of Lasers. 2013, 40(8): 0808003.
陈浩, 邾继贵, 薛彬. 粗糙表面散射特性对基于PSD的激光位移传感器测量精度的影响 [J]. 中国激光. 2013, 40(8): 0808003.

【11】Liu C, Ma Y. Nonlinear correction of PSD with genetic algorithm based on neural network [J]. Journal of Electronic Measurement and Instrument. 2015, 29(8): 1157-1163.
刘春, 马颖. 遗传算法和神经网络结合的PSD非线性校正 [J]. 电子测量与仪器学报. 2015, 29(8): 1157-1163.

【12】Xu C, Dian S Y, Yang J C. Research and implementation on nonlinear correction for 2D-PSD based on fuzzy neural net [J]. Electronic Measurement Technology. 2017, 40(2): 50-54.
徐聪, 佃松宜, 杨杰超. 基于模糊神经网络的二维PSD非线性修正算法 [J]. 电子测量技术. 2017, 40(2): 50-54.

【13】Wang J Y, Wang X D, Liu Z, et al. Correction algorithm for nonlinear distortion of two-dimensional PSD [J]. Journal of Wuhan University of Science and Technology (Natural Science Edition). 2019, 42(1): 56-60.
王静仪, 王兴东, 刘钊, 等. 二维PSD的非线性畸变校正算法 [J]. 武汉科技大学学报(自然科学版). 2019, 42(1): 56-60.

【14】Vo Q S, Zhang X D, Fang F Z. Extended the linear measurement range of four-quadrant detector by using modified polynomial fitting algorithm in micro-displacement measuring system [J]. Optics & Laser Technology. 2019, 112: 332-338.

【15】Wang X J, Gao J, Wang L. Survey on the laser triangulation [J]. Journal of Instruments and Apparatus. 2004, 25(4): 601-608.

【16】Sun J L, Sun G M, Ma P G, et al. Laser target localization based on symmetric wavelet denoising andasymmetric Gauss fitting [J]. Chinese Journal of Lasers. 2017, 44(6): 0604001.
孙俊灵, 孙光民, 马鹏阁, 等. 基于对称小波降噪及非对称高斯拟合的激光目标定位 [J]. 中国激光. 2017, 44(6): 0604001.

【17】Sun C, Liu H B, Chen S Y, et al. A general imaging model based method for scheimpflug camera calibration [J]. Acta Optica Sinica. 2018, 38(8): 0815009.
孙聪, 刘海波, 陈圣义, 等. 基于广义成像模型的Scheimpflug相机标定方法 [J]. 光学学报. 2018, 38(8): 0815009.

【18】Wang W L. Research on NURBS adaptive interpoliation algorithm for short linear segments matching [D]. Jinan: Shandong University. 2015.
王文莉. 针对小线段加工的NURBS自适应插补算法的研究 [D]. 济南: 山东大学. 2015.

【19】Jauch J, Bleimund F, Rhode S, et al. Recursive B-spline approximation using the Kalman filter [J]. Engineering Science and Technology, an International Journal. 2017, 20(1): 28-34.

【20】Shi L C, An Y L, Su B H, et al. An improved background subtraction algorithm based on Kalman filtering [J]. Laser & Optoelectronics Progress. 2018, 55(8): 081003.
施龙超, 安玉磊, 苏秉华, 等. 一种改进的基于卡尔曼滤波的背景差分算法 [J]. 激光与光电子学进展. 2018, 55(8): 081003.

【21】Narasimhappa M, Rangababu P, Sabat S L, et al. A modified Sage-Husa adaptive Kalman filter for denoising Fiber Optic Gyroscope signal[C]∥2012 Annual IEEE India Conference (INDICON). 7-9 Dec. 2012, Kochi, India. New York: , 2012, 1266-1271.

【22】Li Y Z, Wang M G, Guo Y X, et al. Dual-polarization carrier phase recovery algorithm based on simplified extended Kalman filter [J]. Acta Optica Sinica. 2019, 39(11): 1106005.
李耀祖, 王目光, 郭玉箫, 等. 基于简化扩展卡尔曼滤波的双偏振载波相位恢复算法 [J]. 光学学报. 2019, 39(11): 1106005.

【23】Wu D J, Xia L Y, Geng J J. Heading estimation for pedestrian dead reckoning based on robust adaptive Kalman filtering [J]. Sensors. 2018, 18(6): 1970.

【24】Zhao Q H, Wang Y H, Gao X Y, et al. Filtering evaluation method of phase images based on smooth spline fitting [J]. Acta Optica Sinica. 2018, 38(8): 0815020.
赵琪涵, 王永红, 高新亚, 等. 基于平滑样条拟合的相位图像滤波评价方法 [J]. 光学学报. 2018, 38(8): 0815020.

【25】Beccari C V, Casciola G. ACox-de Boor-type recurrence relation for C1 multi-degree splines [J]. Computer Aided Geometric Design. 2019, 75: 101784.

【26】Shi F Z. CAGD & NURBS[M]. Beijing: Higher Education Press, 2001, 226-227.
施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京: 高等教育出版社, 2001, 226-227.

引用该论文

Cui Hao,Guo Rui,Li Xingqiang,Cong Rigang. Calibration of Laser Triangular Displacement Sensor Based on Nonlinear Fitting[J]. Chinese Journal of Lasers, 2020, 47(9): 0904003

崔昊,郭锐,李兴强,丛日刚. 基于非线性拟合的激光三角位移传感器标定方法[J]. 中国激光, 2020, 47(9): 0904003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF