首页 > 论文 > 红外与毫米波学报 > 31卷 > 2期(pp:177-182)

基于PDE去鬼影的自适应非均匀性校正算法研究

PDE-based deghosting algorithm for correction of nonuniformity in infrared focal plane array

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对基于场景的自适应校正算法普遍存在鬼影的问题, 分析了神经网络算法(NN-NUC)产生鬼影的原因,并在此基础上提出了用基于偏微分方程(PDE)的非线性滤波方法取代NN-NUC算法中邻域平均的方法来获取期望图像,从而减少边缘像素误差,达到消除鬼影的目的.采用实际采集的红外图像进行实验,结果表明,很好地消除了鬼影.与已有的几种去鬼影的方法相比,具有更快的收敛性.

Abstract

Generally, most of adaptive nonuniformity correction algorithms have the ghosting artifact problem. In this paper, the cause of ghosting artifacts in Neural Network nonuniformity correction (NN-NUC) algorithm for infrared focal plane array (IRFPA) was studied. Based on the analysis, a novel algorithm for eliminating the ghosting artifact was proposed, which replaces the linear spatial average filter in the NN-NUC algorithm with the partial differential equation (PDE)-based nonlinear filter to estimate the desired image. The comparison experiment using real IRFPA infrared image shows that the proposed algorithm can effectively remove the ghosting artifact. Compared with several deghosting algorithms, the proposed algorithm converges much faster.

中国激光微信矩阵
补充资料

中图分类号:TN215

基金项目:国家自然科学基金(60736010)

收稿日期:2011-04-13

修改稿日期:2011-12-21

网络出版日期:--

作者单位    点击查看

张天序:华中科技大学 图像识别与人工智能研究所 多谱信息处理技术国家重点实验室,湖北 武汉 430074
袁雅婧:华中科技大学 图像识别与人工智能研究所 多谱信息处理技术国家重点实验室,湖北 武汉 430074
桑红石:华中科技大学 图像识别与人工智能研究所 多谱信息处理技术国家重点实验室,湖北 武汉 430074
钟 胜:华中科技大学 图像识别与人工智能研究所 多谱信息处理技术国家重点实验室,湖北 武汉 430074

联系人作者:张天序(txzhang@hust.edu.cn)

备注:张天序(1947-),男,重庆人,博士,教授,主要研究方向为图像分析与智能系统、机器视觉、医学图像处理和实时并行处理等.

【1】Scribner D A., Kruer M R, Gridley J C, et al. Physical limitation to nonuniformity correction in IR focal plane arrays[J]. Proc. SPIE.1987,865:185202.

【2】Milton A F, Barone F R, Kruer M R. Influence of nonuniformity on infrared focal plane array performance[J]. Opt. Eng.,1985,24(5):855862.

【3】Harris J G, Chiang Y M. Nonuniformity correction of infrared image sequences using the constant-statistics constraint[J]. IEEE Trans. Image Process.1999,8(8):11481151.

【4】Scribner D A, Sarkay K A., Kruer M R, et al. Adaptive retina-like preprocessing for imaging detector array[J]. IEEE Intl. Conf. Neural Networks,1993,3:19551960.

【5】Harris J G, Chiang Y M. Minimizing the ghosting artifacts in scene-based nonuniformity correction[J]. Proc. SPIE,1998,3377:106113.

【6】Verar E, Torres I S. Ghosting reduction in adaptive nonuniformity correction of infrared focal-plane array image sequences[J]. IEEE Intl. Conf. Image Process.2003,3:II10014.

【7】SHI Chang-Cheng, ZHANG Tian-Xu, LIU Hui-Na, et al. A combinational algorithm for nonuniformity correction of infrared focal plane array[J]. J.Infrared Millim.Waves(施长城,张天序,刘慧娜,等.一种红外焦平面非均匀性组合校正算法.红外与毫米波学报),2009,29(1):2326.

【8】Hardie R C, Baxley F, Brys B, et al. Scene-based nonuniformity correction with reduced ghosting using a gated LMS algorithm[J]. Opt. Express.2009,17(17):1491814933.

【9】Shi Y , Zhang T X . Edge-directed adaptive nonuniformity correction for staring infrared focal plane arrays[J]. Opt. Eng.2006,45(1):016402111.

【10】Rossi A, Diani M, Corsini G. Temporal statistics de-ghosting for adaptive non-uniformity correction in infrared focal plane arrays[J]. IET Electron. Lett.2010,46(5):348349.

【11】Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans. Pattern Anal. Machine Intell.1990,12(7):629639.

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF