首页 > 论文 > 光学学报 > 36卷 > 12期(pp:1212001--1)

一种多距离融合的大深度测量范围相移阴影叠栅轮廓术

A Multi-Range Merging Method for Phase Shift Shadow Moiré Profilometry with Large Depth Measuring Range

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统阴影叠栅轮廓术深度测量范围有限的问题, 根据阴影叠栅条纹对比度的变化特点, 提出了大深度范围内的阴影叠栅轮廓新型测量方法。该方法将光栅置于不同的高度, 在物体表面形成叠栅条纹, 通过将不同高度范围内的条纹相位测量结果相互融合, 实现了大深度范围内的阴影叠栅轮廓测量。分析了光栅处于不同位置时叠栅条纹的相位分布特点, 提出了基于重叠区域的相位融合方法和误差补偿方法。通过实验验证了所提出方法的可行性和准确性。

Abstract

The depth measuring range is limited by conventional shadow moiré profilometry. In order to solve the problem, a new method of shadow moiré profilometry, which can increase the depth measuring range, is proposed according to the fringe contrast characteristic of shadow moiré. When the grating is placed at different depths, moiré fringes will be formed on the surface. The shadow moiré profilometry with large depth measurement range is realized by merging the fringe phase measurement results of different depth ranges. The phase distributions of moiré fringes at different depths are analyzed. Methods for phase merging and error compensation are proposed based on the overlapping region. The feasibility and veracity of the proposed method are verified by experiments.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/aos201636.1212001

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(61471288)、中央高校基本科研业务费专项资金、苏州市应用基础研究项目(SYG201545)

收稿日期:2016-06-06

修改稿日期:2016-07-24

网络出版日期:--

作者单位    点击查看

艾永旭:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
周翔:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049西安交通大学苏州研究院, 江苏 苏州 215123
杜虎兵:西安工业大学机电工程学院, 陕西 西安 710021
郭家玉:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
费梓轩:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
李东:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049

联系人作者:艾永旭(aiyongxuxj@163.com)

备注:艾永旭(1993—), 男, 硕士研究生, 主要从事光学三维测量方面的研究。

【1】Jin L H, Kodera Y, Yoshizawa T, et al. Shadow moire profilometry using the phase-shifting method[J]. Optical Engineering, 2000, 39(8): 2119-2123.

【2】Post D, Han B, Ifju P. High sensitivity moiré: experimental analysis for mechanics and materials[M]. New York: Springer Science & Business Media, 1994.

【3】Keren E, Kafri O. Diffraction effects in moiré deflectometry[J]. Journal of the Optical Society of America A, 1985, 2(2): 111-120.

【4】Kafri O, Keren E. Fringe observation and depth of field in moiré analysis[J]. Applied Optics, 1981, 20(17): 2885-2886.

【5】Bar-Ziv E. Effect of diffraction on the moiré image. I. Theory[J]. Journal of the Optical Society of America A, 1985, 2(3): 371-379.

【6】Talbot H F, Esq F R S. LXXVI. Facts relating to optical science. No. IV[J]. Philosophical Magazine Series 3, 1836, 9(56): 401-407.

【7】Lord Rayleigh F R S.XXV. On copying diffraction-gratings, and on some phenomena connected therewith[J]. Philosophical Magazine Series 5, 1881, 11(67): 196-205.

【8】Latimer P, Crouse R F. Talbot effect reinterpreted[J]. Applied Optics, 1992, 31(1): 80-89.

【9】Wang H S. A study of Talbot illuminator with a binary phase grating and a fractional Fourier transformation under a spherical wave illumination[C]. International Conference on Information Engineering and Computer Science, 2009: 11033082.

【10】Sun Qiongge, Ma Jinpeng, Yang Yu, et al. Talbot effect in linear canonical transformation[J]. Acta Optica Sinica, 2014, 34(7): 0711004.
孙琼阁, 马金鹏, 杨 瑀, 等. 线性正则变换中的泰伯效应[J]. 光学学报, 2014, 34(7): 0711004.

【11】Lu Yangyi, Li Jing, Huang Xianbin, et al. Numerical investigation on factors affecting the visibility of monochromatic X-ray grating talbot self-imaging fringes[J]. Laser & Optoelectronics Progress, 2016, 53(3): 033401.
卢阳沂, 李 晶, 黄显宾, 等. 单色X射线光栅泰伯条纹可见度影响因素模拟研究[J]. 激光与光电子学进展, 2016, 53(3): 033401.

【12】Han C, Han B. Contrast of shadow moiré at high-order talbot distances[J]. Optical Engineering, 2005, 44(2): 028002.

【13】Han C. UV shadow moiré for specular and large surface shape measurement[J]. Progress in Optomechatronic Technologies, 2014, 306: 73-79.

【14】Ai Yongxu, Zhou Xiang, Du Hubing, et al. Shadow moiré using Talbot effect under point light illumination[J]. Acta Optica Sinica, 2016, 36(4): 0412003.
艾永旭, 周 翔, 杜虎兵, 等. 点光源下的Talbot效应在阴影叠栅中的应用[J]. 光学学报, 2016, 36(4): 0412003.

【15】Meadows D M, Johnson W O, Allen J B. Generation of surface contours by moiré patterns[J]. Applied Optics, 1970, 9(4): 942-947.

【16】Servin M, Estrada J C, Quiroga J A. The general theory of phase shifting algorithms[J]. Optics Express, 2009, 17(24): 21867-21881.

【17】Du H, Zhao H, Li B, et al. Phase-shifting shadow moiré based on iterative self-tuning algorithm[J]. Applied Optics, 2011, 50(36): 6708-6712.

【18】Huang P S, Guo H. Phase shifting shadow moiré using the Carré algorithm[C]. SPIE, 2008, 7066: 70660B.

引用该论文

Ai Yongxu,Zhou Xiang,Du Hubing,Guo Jiayu,Fei Zixuan,Li Dong. A Multi-Range Merging Method for Phase Shift Shadow Moiré Profilometry with Large Depth Measuring Range[J]. Acta Optica Sinica, 2016, 36(12): 1212001

艾永旭,周翔,杜虎兵,郭家玉,费梓轩,李东. 一种多距离融合的大深度测量范围相移阴影叠栅轮廓术[J]. 光学学报, 2016, 36(12): 1212001

被引情况

【1】颜菁菁,杜虎兵. 相移阴影叠栅实时标定技术. 激光与光电子学进展, 2017, 54(9): 91202--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF