首页 > 论文 > 激光与光电子学进展 > 54卷 > 7期(pp:71205--1)

小波变换减小调制度轮廓术中非线性的研究

Research on the Nonlinearity Mitigation by Wavelet Transform Method in Modulation Profilometry

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

调制度轮廓术采用条纹投影和成像共轴的系统结构,将被测物体的高度信息编码在条纹的模糊程度中,无需相位展开即可完成对复杂物体的面形测量,能有效避免阴影、遮挡和相位不连续等问题。在实际测量中,由于CCD探测器光电响应的非线性,高次频的引入直接影响调制度分布的提取,从而降低系统的测量精度。研究了小波变换应用于受到非线性因素影响下的条纹调制度提取,从信号频域角度分析并推导了该方法提取条纹调制度的表达式。在进行条纹解调时采用最佳的加权滤波窗,有效抑制了非线性因素对测量精度的影响,获得比傅里叶变换更好的重建效果,计算模拟和实验验证了该结论的正确性。

Abstract

In the modulation profilometry, the fringe projection axis coincides with the observation axis, and the height information of measured object is encoded into fringe defocus, which completes the measurement with complex surface, the problems of shadows, shutoff and phase truncating. However, in the practical measurement, extraction of modulation distribution from fringe patterns will be affected on account of high-order harmonics produced by photoelectric response nonlinearity of CCD detector, which will reduce the measurement accuracy. The wavelet transform method is applied to modulation retrieval, and the frequency-domain description analysis is deduced for the fringe pattern influenced by nonlinearity. With the advantages of local analysis and multi-resolution, an adaptive optimized filtering operation is adopted to demodulate the image, which mitigates the effect of nonlinearity on measurement accuracy effectively and obtains better reconstruction results compared with Fourier transform method, both the computer simulation and practical experiment verified the validity of the proposed method.

投稿润色
补充资料

中图分类号:O436

DOI:10.3788/lop54.071205

所属栏目:仪器,测量与计量

基金项目:成都信息工程大学科研基金(KYTZ201619,KYTZ201516)

收稿日期:2017-01-06

修改稿日期:2017-02-13

网络出版日期:--

作者单位    点击查看

钟 敏:成都信息工程大学光电技术学院, 四川 成都 610225
陈 锋:成都信息工程大学光电技术学院, 四川 成都 610225
肖 朝:成都信息工程大学光电技术学院, 四川 成都 610225

联系人作者:钟敏(zm1013@cuit.edu.cn)

备注:钟 敏(1987—),女,博士,讲师,主要从事信息光学和光学三维传感方面的研究。

【1】Su X Y, Zhang Q C. Dynamic 3D shape measurement method: a review[J]. Optics and Lasers in Engineering, 2010, 48(2): 191-204.

【2】Chen F, Brown G M, Song M M. Overview of three-dimensional shape measurement using optical methods[J]. Optics Engineering, 2000, 39(1): 10-22.

【3】Su Xianyu, Zhang Qican, Chen Wenjing. Structured light 3D imaging technology[J]. Chinese J Lasers, 2014, 41(2): 0209001.
苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41(2): 0209001.

【4】Takasaki H. Moiré topography[J]. Applied Optics, 1970, 9(6): 1467-1472.

【5】Zhao Hong, Chen Wenyi, Tan Yushan. Automatic shadow Moirétopography[J]. Acta Optica Sinica, 1995, 15(9): 1275-1277.
赵宏, 陈文艺, 谭玉山. 自动的阴影莫尔轮廓术[J]. 光学学报, 1995, 15(9): 1275-1277.

【6】Srinivasan V, Liu H C, Halioua M. Automated phase-measuring profilometry of 3D diffuse objects[J]. Applied Optics, 1984, 23(18): 3105-3108.

【7】Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics, 1983, 22(24): 3977-3982.

【8】Zhong J G, Weng J W. Phase retrieval of optical fringe patterns from the ridge of a wavelet transform[J]. Optics Letters, 2005, 30(19): 2560-2562.

【9】Jiang Mohua, Chen Wenjing, Zheng Zhiping. Research of phase demodulation technique based on S-transform[J]. Acta Optica Sinica, 2011, 19(9): 04120001.
蒋模华, 陈文静, 郑志平. 基于S变换的解相技术研究[J]. 光学学报, 2011, 31(4): 04120001.

【10】Su X Y, Su LK, Li W S, et al. New 3D profilometry based on modulation measurement[J]. SPIE, 1998, 3558: 1-7.

【11】Su Likun, Su Xianyu, Li Wansong, et al. 3D profilometry based on modulation measurement[J]. Acta Optica Sinica, 1999, 19(9): 1257-1262.
苏礼坤, 苏显渝, 李万松, 等. 基于调制度测量的三维轮廓术[J]. 光学学报, 1999, 19(9): 125-1262.

【12】Zhong M, Chen F, Xiao C, et al. 3-D surface profilometry based on modulation measurement by applying wavelet transform method[J]. Optics and Lasers in Engineering, 2017, 88: 243-254.

【13】Nayar S K, Nakagawa Y. Shape from focus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(8): 824-831.

【14】Subbarao M, Gurumoorthy N. Depth recovery from blurred edges[J]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1988: 498-503.

【15】Gonzalez R C, Woods R E,Eddins S L. Digital image processing[M]. Ruan Qiuqi, Transl. 2nd ed. Beijing: Science Press, 2007: 63-66.
冈萨雷斯, 伍兹, 艾丁斯. 数字图像处理[M]. 阮秋琦, 译. 2版. 北京: 电子工业出版社, 2007: 63-66.

【16】Su Ke, Chen Wenjing. Analyzing wavelet transform profilometry in the restraining CCD nonlinear characteristic[J]. Optical Technique, 2009, 35(1): 37-40.
苏 轲, 陈文静. 小波变换轮廓术抑制CCD非线性的分析[J]. 光学技术, 2009, 35(1): 37-40.

【17】Zhao Huandong, Zhu Bijin, Li Zhineng. Effect on the Fourier transform profilometry due to the CCD nonlinearity[J]. Optical Instruments, 2000, 22(5): 7-13.
赵焕东, 祝必进, 李志能. CCD的非线性效应对改进型傅里叶变换轮廓术的影响[J]. 光学仪器, 2000, 22(5): 7-13.

引用该论文

Zhong Min,Chen Feng,Xiao Chao. Research on the Nonlinearity Mitigation by Wavelet Transform Method in Modulation Profilometry[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071205

钟 敏,陈 锋,肖 朝. 小波变换减小调制度轮廓术中非线性的研究[J]. 激光与光电子学进展, 2017, 54(7): 071205

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF