首页 > 论文 > 光子学报 > 46卷 > 8期(pp:811002--1)

基于泛频振动的石英增强光声光谱测声器优化设计

Optimization of Overtone Resonance Based Quartz-enhanced Photoacoustic Spectroscopy Spectrophone

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了进一步提高基于泛频振动的石英增强光声光谱测声器探测灵敏度,在一次泛频振动模式下采用一个比商用标准音叉外形尺寸大5倍的定制大音叉,并对其性能进行优化.通过理论和实验研究得出了音叉与激光的最佳作用位置,发现音叉的一次泛频振动有两个波腹点,且在距离音叉根部8 mm处,音叉振臂的振动幅度最大.微型声音谐振腔由三种不同内径的不锈钢毛细管加工而成,与音叉组成共轴配置石英增强光声光谱光谱测声器,用来进一步增强信号幅值.在最佳微型声音谐振腔配置下,获得了30倍的信号增益因子,有效提高了石英增强光声光谱光谱测声器的探测灵敏度.

Abstract

A custom quartz tuning fork which is 5 times larger than commercial standard quartz tuning fork and operated at the 1st overtone resonance mode was used and optimized to improve the sensitivity of the quartz-enhanced photoacoustic spectroscopy spectrophone. The optimum ecxiting position for the laser beam was researched. Two resonance antinodes were found in the 1st overtone resonance, and the maxium signal amplitude was obtained at a distance of 8 mm from the tuning fork support. Acoustic micro-resonantors with three different inner diameters were configured with the custom tuning fork to evaluate the performance of the quartz-enhanced photoacoustic spectroscopy spectrophone. With an optinal parameters, a sensitivity gain factor of 30 was achieved with respect to the signal amplitude obtained by the bare tuning fork without acoustic micro-resonantors.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O433.1;O433.4

DOI:10.3788/gzxb20174608.0811002

基金项目:国家自然科学基金(Nos.61622503,61575113)资助

收稿日期:2017-03-03

修改稿日期:2017-05-22

网络出版日期:--

作者单位    点击查看

马英:中国辐射防护研究院,太原 030006山西大学 激光光谱研究所 量子光学与光量子器件国家重点实验室,太原 030006
余亮:新乡市第一中学,河南 新乡 453000山西大学 激光光谱研究所 量子光学与光量子器件国家重点实验室,太原 030006
郑华丹:山西大学 激光光谱研究所 量子光学与光量子器件国家重点实验室,太原 030006山西大学 极端光学协同创新中心,太原 030006
刘群:中国辐射防护研究院,太原 030006
丘丹圭:中国辐射防护研究院,太原 030006
侯建荣:中国辐射防护研究院,太原 030006
尹王保:山西大学 激光光谱研究所 量子光学与光量子器件国家重点实验室,太原 030006山西大学 极端光学协同创新中心,太原 030006
董磊:山西大学 激光光谱研究所 量子光学与光量子器件国家重点实验室,太原 030006山西大学 极端光学协同创新中心,太原 030006

联系人作者:马英(mying1000@163.com)

备注:马英(1974-),女,高级工程师,硕士,主要研究方向为气体、气溶胶检测技术.

【1】DONG Lei, KOSTEREV A A, THOMAZY D, et al. QEPAS spectrophones: design, optimization, and performance[J]. Applied Physics B: Lasers and Optics, 2010, 100(3): 627-635.

【2】DONG Lei, WU Hong-peng, ZHENG Hua-dan, et al. Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2014, 39(8): 2479-2482.

【3】WU Hong-peng, DONG Lei, ZHENG Hua-dan, et al. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring[J]. Nature Communications 2017, 8:15331.

【4】PATIMISCO P, SAMPAOLO A, ZHENG Hua-dan, et al. Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review [J]. Advances in Physics: X, 2017, 2(1): 169-187.

【5】ZHENG Hua-dan, DONG Lei, PATIMISCO P, et al. Double antinode excited quartz-enhanced photoacoustic spectrophone [J]. Applied Physics Letters, 2017, 110(2): 021110.

【6】ZHENG Hua-dan, DONG Lei, SAMPAOLO A, et al. Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone [J]. Applied Physics Letters, 2016,109(11): 111103.

【7】WU Hong-peng, SAMPAOLO A, DONG Lei, et al. Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing [J]. Applied Physics Letters, 2015, 107(11): 111104.

【8】ZHENG Hua-dan, DONG Lei, SAMPAOLO A, et al. Single-tube on-beam quartz-enhanced photoacoustic spectroscopy [J]. Optics Letters, 2016, 41(5): 978-981.

【9】YIN Xu-kun, DONG Lei, ZHENG Hua-dan, et al. impact of humidity on quartz-enhanced photoacoustic spectroscopy based co detection using a near-IR telecommunication diode laser [J]. Sensors, 2016, 16(2): 162.

【10】LIU Kun, ZHAO Wei-xiong, WANG Lei, et al. Quartz-enhanced photoacoustic spectroscopy of HCN from 6433 to 6613cm-1 [J]. Optics Communications, 2015, 340: 126-130.

【11】YI Hong-ming, CHEN Wei-dong, VICET A, et al. T-shape microresonator-based quartz-enhanced photoacoustic spectroscopy for ambient methane monitoring using 3.38μm antimonide-distributed feedback laser diode [J]. Applied Physics B: Lasers and Optics, 2014, 116(2): 423-428.

【12】MA Yu-fei, HE Ying, YU Xing, et al. HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork [J]. Sensors and Actuators B: Chemical, 2016, 233: 388-393.

【13】WANG Fu-peng, CHANG Jun, WANG Qiang, et al. Improvement in QEPAS system based on miniaturized collimator and flat mirror [J]. Optics Communications, 2016, 381: 152-157.

【14】LIU Yong-ning, CHANG Jun, LIAN Jie, et al. Quartz-enhanced photoacoustic spectroscopy with right-angle prism [J].Sensors, 2016, 16(2): 214.

【15】LIN Cheng, ZHU Yong, WEI Wei, et al. A novel QEPAS with microresonator in the open environment [J]. International Journal of Thermophysics, 2013, 34(8-9): 1413-1420.

【16】LI Zhi-li, WANG Zhen, WANG Chao, et al. Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection [J]. Applied Physics B: Lasers and Optics, 2016, 122(5): 1-6.

【17】GONG Ping, XIE Liang, QI Xiao-qiong, et al. A quartz-enhanced photoacoustic spectroscopy sensor for measurement of water vapor concentration in the air [J]. Chinese Physics B, 2015, 24(1): 014206.

引用该论文

MA Ying,YU Liang,ZHENG Hua-dan,LIU Qun,QIU Dan-gui,HOU Jian-rong,YIN Wang-bao,DONG Lei. Optimization of Overtone Resonance Based Quartz-enhanced Photoacoustic Spectroscopy Spectrophone[J]. ACTA PHOTONICA SINICA, 2017, 46(8): 0811002

马英,余亮,郑华丹,刘群,丘丹圭,侯建荣,尹王保,董磊. 基于泛频振动的石英增强光声光谱测声器优化设计[J]. 光子学报, 2017, 46(8): 0811002

被引情况

【1】程刚,陈家金,曹亚南,田兴,刘锟,曹渊. 圆柱形光声池结构及环境因素对声学本征频率的影响. 光子学报, 2020, 49(2): 230001-230001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF