黄琪 1,2王晴 3汪开涛 3王聪珊 3[ ... ]董磊 1,2,**
作者单位
摘要
1 山西大学激光光谱研究所,量子光学与光量子器件国家重点实验室,山西 太原 030006
2 山西大学极端光学协同创新中心,山西 太原 030006
3 山西大学物理电子工程学院,山西 太原 030006
为了研究室内二氧化碳(CO2)体积分数变化以及其与人类活动之间的关系,设计了一种开放路径式可调谐二极管激光吸收光谱(TDLAS)传感系统对室内CO2体积分数进行监测。采用中心波长为2004 nm的分布式反馈(DFB)激光器作为激励光源测量CO2的R(16)特征吸收线。使用Levenberg-Marquardt非线性最小二乘法拟合测量光谱,实现体积分数测量免定标。与商用XENSIVTMPAS二氧化碳传感器进行对比测量,二者的相关度R2达到0.89。结果显示,室内CO2每日体积分数均值为4.63×10-4,略高于室外的CO2体积分数,并且一天内波动范围在3.86×10-4~5.66×10-4之间。室内CO2体积分数受通风情况和室内人员活动的影响,其每日体积分数变化趋势与人员工作时间高度相关。在人员密度为0.005 人/m3的情况下,测量得到CO2体积分数的增长速率为2.3×10-5 h-1。因此,人员拥挤的室内环境应及时通风,以防止体积分数过高的CO2引起不适。
可调谐二极管激光吸收光谱技术 痕量气体 免标定 室内二氧化碳检测 在线监测 
激光与光电子学进展
2024, 61(5): 0530004
周美静 1,2†刘小利 1,2†崔茹悦 1,2薛积禹 1,2[ ... ]武红鹏 1,2,*
作者单位
摘要
1 山西大学激光光谱研究所量子光学与光量子器件国家重点实验室,山西 太原 030006
2 山西大学极端光学协同创新中心,山西 太原 030006
光致热弹光谱(LITES)技术是近年来发展迅速的一种新颖痕量气体检测技术,该技术以体积小巧、成本低廉且无波长选择性的音叉式石英晶振替代成本高、探测波段窄的光电探测器作为光电换能器,通过探测激光与目标气体相互作用后光强的变化量实现目标气体浓度的反演。LITES技术具有探测灵敏度高、响应时间短、无波长选择性等优点。本文以下水道中的硫化氢气体为测量目标,开展了基于LITES技术的痕量气体探测系统的研究。以输出波长为1.582 μm的近红外连续波分布反馈单纵模二极管激光器作为激发光源,采用激光器波长调制和二次谐波探测技术,首先研究了激光波长调制深度对LITES系统产生的信号幅度的影响,而后详细研究了气体压强及环境压强对装置性能的影响。此外,为进一步提升装置探测灵敏度,有效光程长度为14.5 m的Herriott多通池被装配在激光器和作为光电探测器的音叉式石英晶振之间,从而使传感器在积分时间为300 ms时,获得4.87×10-7的最低探测极限,当积分时间延长至52 s时其探测灵敏度可达7.78×10-8。在完成装置各项参数优化之后开展了下水道中硫化氢气体的实测研究,结果显示,该系统完全可满足下水道臭气监测分析等领域的应用需求。
光致热弹光谱 音叉式石英晶振 硫化氢 气体传感 
激光与光电子学进展
2024, 61(3): 0330002
作者单位
摘要
1 暨南大学 理工学院 光电工程系,广州 510632
2 山西大学 量子光学与光量子器件国家重点实验室,太原 030006
为了提高二氧化碳气体检测系统的测量空间分辨率并减小系统体积,设计了一种基于2 μm激光二极管和Herriott多光程吸收池的高灵敏二氧化碳气体传感器。设计并加工了有效光程为2.6 m的Herriott池来进行光路折叠。使用中心波长为2 μm的激光二极管,覆盖二氧化碳分子在4 989.9 cm-1处的较强吸收线。采用波长调制技术减小系统的噪声。此外,为系统加载Kalman滤波技术来进一步提高探测灵敏度。实验结果表明,采用该传感器,系统的探测极限在1 s的积分时间下可达到0.18×10-6,而经过自编程实时Kalman滤波后探测极限可达到0.13×10-6,提高了27%。采用该传感器对室内二氧化碳浓度进行长达8 h的连续监测,并在暨南大学理工学院楼顶进行了24 h的二氧化碳浓度监测,证明了仪器的稳定性。
光谱学 可调谐二极管激光吸收光谱技术 多光程池 Herriott池 二氧化碳传感器 Spectroscopy Tunable diode laser absorption spectroscopy Multipass-cell Herriott cell Carbon dioxide sensor 
光子学报
2023, 52(10): 1052406
阮宇翔 1,2董磊 1,*
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为了提高传统星敏感器的姿态测量精度,可将干涉测角技术与传统星敏感器相结合,即在传统星敏感器质心定位技术的基础上,利用星像点的光强信息进一步进行细分,从而突破了质心定位的精度限制,形成具有大视场高精度的干涉星敏感器。本文对制约干涉星敏感器测角精度的因素进行深入研究,重点研究干涉条纹的分割误差对测角精度的影响机理。通过研究分析,得出以下结论:光锲阵列不等分误差不是影响干涉星敏感器测角精度的主要因素;莫尔条纹周期与光楔阵列整体通光尺寸不匹配误差小于1%时,可保证单因素测角误差小于0.01";对于莫尔条纹取向与光楔阵列排布方向不正交误差,条纹旋转角度应当小于0.1°,可保证单因素测角误差小于0.01"。所以,应在实际加工与装调过程中抑制上述两个主要误差,从而使干涉星敏感器的实际测角精度接近高精度理论值。
干涉星敏感器 干涉测角技术 干涉条纹 相位估计 测角精度 interferometer star tracker interferometric angle measuring technique interference fringe phase estimation angle measuring accuracy 
中国光学
2023, 16(6): 1433
作者单位
摘要
南京理工大学, 南京 210000
针对快速搜索随机树(RRT)算法在航迹规划过程中存在采样点扩展随机性强、航迹曲折不平滑等问题, 提出了一种基于约束随机采样点的RRT(Constrained Random Sampling-based RRT, CRS-RRT)算法。该算法引入人工势场法中的引力场势能函数约束随机采样点在目标点附近采样, 引导随机树朝着目标点生长, 提高算法的规划速度,并结合去除冗余节点策略和Minimum Snap航迹平滑方法, 在复杂三维环境中可快速生成一条安全、平滑且满足无人机动力学约束的航迹。仿真结果表明, 该算法有效提高航迹规划速度并缩短航迹长度。
无人机 航迹规划 快速扩展随机树算法 约束采样点 动力学约束 UAV path planning rapid-exploration random tree algorithm constraint sampling point dynamic constraint 
电光与控制
2023, 30(7): 35
王刚 1,2武红鹏 1,2廖洁麟 3魏永峰 3[ ... ]董磊 1,2,*
作者单位
摘要
1 山西大学量子光学与光量子器件国家重点实验室,激光光谱研究所,山西 太原 030006
2 山西大学极端光学协同创新中心,山西 太原 030006
3 山西迪奥普科技有限公司,山西 太原 030006
讨论无人机载污染气体激光监测技术的发展现状以及在我国“天地空”一体化监测体系中的应用价值。无人机载污染气体激光监测平台由无人机平台和机载污染气体激光传感器两部分组成。从无人机平台出发,首先介绍当前无人机平台的类型,阐明不同类型无人机的优势和劣势;然后,介绍适用于无人机装载的几种激光光谱传感技术原理和相关应用,讨论无人机载污染气体激光监测技术在气体监测领域的应用潜能。
激光光谱 激光传感器 无人机 气体监测 
光学学报
2023, 43(18): 1899912
张靖鹏 1,2陈起行 1,2王妍卉 1,2董磊 1,2[ ... ]张文鑫 1,2
作者单位
摘要
1 中国科学院微小卫星创新研究院,上海 201304
2 上海微小卫星工程中心,上海 201304
对采用天基逆合成孔径雷达(ISAL)对300~2000 km轨道高度的低轨(LEO)目标的掠飞和绕飞成像模式进行了性能分析及可行性探究,分析了成像分辨率和成像时间、最小无模糊脉冲重复频率(PRF)和回波信噪比(SNR)等系统关键指标,并进行了对比。研究结果表明:绕飞成像模式相比于掠飞成像模式可以实现对于目标的多角度持续观测,且绕飞周期较短(1.5~2.1 h),可以快速获取更为丰富的目标信息,具备进一步三维ISAL成像的潜力;脉冲积累时间虽然更长,但在300~2000 km轨道高度范围只有130~190 ms (掠飞成像为0.1~130 ms);最小无模糊PRF (对于10 m转动直径的目标,约为15 Hz)减少一半(减少了对激光器高重频的要求);由于更长的脉冲积累时间,绕飞模式的回波信噪比更高,通过后期处理可以获得更为清晰的图像结果;适用于对重要目标和高价值资产进行快速、高分辨率、全方位的持续观测。而掠飞模式适用于对相近轨道高度面的LEO目标进行遍历和成像,从而建立目标的特征库。
成像模式 天基 逆合成孔径激光雷达 LEO目标 imaging mode space-based Inverse Synthetic Aperture LADAR LEO targets 
红外与激光工程
2023, 52(5): 20220679
陈争 1,2孙波 1,2董磊 1,2武红鹏 1,2,*
作者单位
摘要
1 山西大学 量子光学与光量子器件国家重点实验室,激光光谱研究所,太原 030006
2 山西大学 极端光学协同创新中心,太原 030006
针对传统商用音叉存在的共振频率高、振臂间距窄等问题,利用COMSOL有限元分析软件构建音叉理论模型,确定了音叉的共振频率及品质因数等核心电学参数与音叉几何尺寸之间的相关特性,进而通过控制音叉振臂形状、长度等几何特性,设计制备了具有振臂间距宽、共振频率低且品质因数高等特性的锤状异型音叉。在将音叉外表面设置为硬声场边界条件且将音叉基座设置为固定约束条件的情况下,对锤状异型定制音叉的关键参数进行了理论计算及实验测定。结果显示,与传统商用音叉相比,异型音叉在振臂间距扩大近3倍的情况下,其共振频率和品质因数两项音叉核心电学参数分别优化了62%和14%。为验证锤状异型定制音叉在光声光谱气体传感技术中的性能,基于该定制音叉搭建了乙炔石英增强光声光谱传感器。在对激光调制深度、微型声学谐振腔腔长、谐振腔装配位置等多项参数优化后,乙炔传感器在300 ms积分时间及常温常压条件下获得的检测极限相比基于传统商用音叉搭建的传感器提升了近一个数量级,达到了282×10-9,归一化噪声等效吸收系数可达3.84×10-9cm-1W/Hz
光声光谱 石英增强光声光谱 定制音叉 锤状振臂 乙炔 气体传感器 Photoacoustic spectroscopy Quartz-enhanced photoacoustic spectroscopy Custom tuning fork Hammer-shaped prong Acetylene Gas sensors 
光子学报
2023, 52(3): 0352122
田志辉 1,2王树青 3张雷 1,2,*张培华 1,2[ ... ]贾锁堂 1,2
作者单位
摘要
1 山西大学 量子光学与光量子器件国家重点实验室,太原 030006
2 山西大学 极端光学创新研究中心,太原 030006
3 中国石化石油加工研究院,北京 100089
4 山西格盟中美清洁能源研发中心有限公司,太原 030006
基于提出的激光诱导击穿光谱(LIBS)和X射线荧光光谱(XRF)的联用多光谱方法,设计了一种基于软件控制的煤质快速分析仪,该分析仪包括LIBS分析模块、XRF分析模块、送样模块、控制模块和操作软件。该仪器不仅发挥了LIBS全元素分析的长处,还继承了XRF高稳定分析的优点,可用于发电厂对压制煤饼进行快速连续的检测。此外,基于偏最小二乘回归方法对数百个煤样进行了光谱分析建模,并完成了工业测试与性能评价。评估结果表明,所建发热量、灰分、挥发分和硫分定标模型的R2分别为0.973、0.986、0.977、0.979,平均绝对误差分别为0.60 MJ/kg、1.24%、0.18%、0.19%,工业分析的平均SD分别为0.11%、0.49%、0.15%、0.09%。模型结果表现出不错的准确度和良好的稳定性,对所有煤炭工业指标的测量重复性均达到甚至优于国标要求。同时,实测结果表明,该仪器对煤炭发热量、灰分、挥发分、硫分的平均绝对误差分别为0.385 MJ/kg、0.830%、0.496%、0.230%,单次样品检测约需5.5 min,能够满足工业现场的实际需求,为煤炭性质的前瞻性预测开辟了道路。
激光诱导击穿光谱 X射线荧光光谱 联用多光谱 高重复性测量 工业设计 煤质分析 Laser-induced breakdown spectroscopy X-ray fluorescence spectrometry Coupled multi-spectrum High repeatability measurement Industrial design Coal quality analysis 
光子学报
2023, 52(3): 0352109
作者单位
摘要
山西大学 激光光谱研究所,量子光学与光量子器件国家重点实验室,太原 030006
随着光声光谱的不断发展,以光声效应为基础所兴起的非侵入式光声成像技术正逐步成为生物医学的研究热点。该技术除具有光学成像优点外,还拥有声学深度传播优势,能够突破光学衍射极限、散射极限,获得高成像分辨率。本文介绍了光声成像的原理机制,对目前三种典型光声成像技术:光声断层成像技术、光声显微镜技术和光声内窥镜技术分别进行了介绍,总结对比了这三种成像技术的优势,同时总结了近十几年随着光声技术的不断发展,为提高其成像分辨率的各类方法,最后展望了三种技术的未来发展趋势。
光声光谱 生物医学 光声成像 结构成像 Photoacoustic spectroscopy Biomedicine Photoacoustic imaging Structural imaging 
光子学报
2023, 52(3): 0352105

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!