作者单位
摘要
1 山西大学 激光光谱研究所 量子光学与光量子器件国家重点实验室, 山西 太原 030006
2 山西大学 极端光学协同创新中心, 山西 太原 030006
3 中石油化工股份有限公司石油化工科学研究院, 北京 100083
4 中国兵器科学研究院, 北京 100089
5 山西新华防化装备研究院有限公司, 山西 太原 030041
6 西安工业大学 光电工程学院, 陕西 西安 710021
7 山西格盟中美清洁能源研发中心有限公司, 山西 太原 030032
为了消除激光诱导击穿光谱技术(laser-induced breakdown spectroscopy,LIBS)中的自吸收效应,提高元素定量分析的精确度,同时满足工业中便捷分析元素的要求,需将自吸收免疫激光诱导击穿光谱技术(self-absorption free laser-induced breakdown spectroscopy,SAF-LIBS)的装置小型化。本文提出了一项新型的高重频声光门控SAF-LIBS定量分析技术,使用高重频激光器产生准连续的等离子体以增强光谱强度,并将声光调制器(acousto-optic modulator,AOM)作为门控开关,从而使微型CCD光谱仪和AOM能够代替传统大型SAF-LIBS装置中的像增强探测器(intensified charge coupled device,ICCD)和中阶梯型光栅光谱仪,实现自吸收免疫的同时缩小了装置的体积,降低了装置的成本。将该系统参数进行优化选择后,对样品中的Al元素进行了定量分析和预测。实验结果表明,等离子体的特性受激光重复频率的影响进而会影响光谱信号的强度。在1 ~ 50 kHz激光重复频率范围内,Al I 394.4 nm和Al I 396.15 nm的双线强度先增强后减弱,确定最佳的激光重复频率为10 kHz。在不同的光纤采集角度下,Al的双线强度比随延迟时间的增加而减小,在45°处信噪比最高,且在一定的积分时间下,最佳光学薄时间tot为426 ns。在激光重复频率为10 kHz、光纤采集角为45°、延迟时间为400 ns的条件下,对Al元素进行定量分析和预测结果表明,Al元素定标曲线的线性度R2为0.982,平均绝对测量误差相对于单一LIBS的0.8%可以降低至0.18%。定量分析结果与传统大型SAF-LIBS装置的测量精度相持平。因此本高重频声光门控SAF-LIBS装置不仅有效地屏蔽了光学厚等离子体中的连续背景辐射和谱线加宽,同时具备小型化、低成本、高可靠性的优点,有助于推动SAF-LIBS技术由实验室走向工业应用。
激光诱导击穿光谱 自吸收免疫 光学薄 高重频激光器 声光门控 laser-induced breakdown and spectroscopy self-absorption free optically thin high repetition rate laser acousto-optic gating 
中国光学
2024, 17(2): 253
作者单位
摘要
1 中北大学半导体与物理学院, 山西 太原 030051
2 山西大学激光光谱研究所, 量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学, 极端光学协同创新中心, 山西 太原 030006
3 中国兵器科学研究院, 北京 100089
4 西安电子科技大学物理与光电工程学院, 陕西 西安 710071
由于等离子体是激光诱导击穿光谱(LIBS)的光谱源, 其内部粒子的分布结构将直接影响LIBS谱线的信噪比, 因此研究等离子体粒子分布结构和动态膨胀过程对提高LIBS的定量测量精度具有指导意义。 利用时间、 空间、 波长分辨的双波长差分成像技术分析激光诱导铝锡合金产生的二元等离子体, 获取等离子体内各态粒子发射率的时空分布图像, 以期探索不同激光支持吸收波(LSAW)类型的等离子体内各态粒子时空分布结构的演化机制。 实验通过低、 高激光辐照度的脉冲激光, 分别构建了激光支持燃烧波(LSCW)和激光支持爆轰波(LSDW)型等离子体。 通过观察等离子体的形态、 内部结构、 粒子分布、 粒子寿命, 结合元素的物理性质及谱线属性, 分析了激光与金属及等离子体之间的相互作用, 形成了二元激光等离子体的时空演化机制。 结果表明: (1)激光辐照度会改变等离子体的粒子分布结构; (2)低辐照度激光诱导产生的LSCW型等离子体内部有明显的层状分布, 激光主要吸收区位于蒸汽等离子体, 此时粒子的寿命较短, 分布结构主要依赖于元素熔点, 低熔点元素会先从难混溶合金表面熔化并析出, 分布于蒸汽等离子体顶部; (3)高辐照度激光产生等离子体的传播模型为LSDW型, 其内部蒸汽等离子体与冲击气体层有很大的混合区域, 激光主要被冲击气体层所吸收, 此时粒子寿命延长, 分布结构主要依赖于元素的相对原子质量。 高激光辐照度会使难混溶合金表面烧蚀区域内的粒子同时汽化, 粒子速度与相对原子质量的平方根成反比, 即相对原子质量小的粒子飞行速度快, 分布在蒸汽等离子体顶部。 以上等离子体粒子分布结构的时空演化机制有望普适于其他元素甚至多元等离子体情形。
激光诱导击穿光谱 激光支持燃烧波 激光支持爆轰波 粒子分布 Laser induced breakdown spectroscopy Laser supported combustion wave (LSCW) Laser supported detonation wave (LSDW) Species distribution 
光谱学与光谱分析
2023, 43(7): 2067
宋健超 1,2张雷 1,2,*马维光 1,2尹王保 1,2,*贾锁堂 1,2
作者单位
摘要
1 山西大学 量子光学与光量子器件国家重点实验室 山西大学激光光谱研究所, 山西 太原 030006
2 山西大学 极端光学协同创新中心,山西 太原 030006
实时获知煤炭发热量对于及时调整电站锅炉风粉配比和提高煤炭燃烧效率具有重要意义,为了实现电力生产中发热量的稳定快速检测,提出了一种近红外光谱(Near Infrared Spectroscopy, NIRS)与X射线荧光光谱(X-ray Fluorescence, XRF)联用的煤炭发热量高稳定检测方法,它结合了NIRS能高稳定检测煤中与发热量正相关的有机基团的优势与XRF能高稳定检测与发热量负相关的成灰元素的特点,大大提高了对煤炭发热量的测量重复性。在光谱预处理中,先将两套光谱融合作为偏最小二乘回归的输入变量进行全谱初步建模,依据回归系数选择NIRS光谱中的有效波段,再将它与XRF光谱中的成灰元素谱线一并融合进行归一化处理。建模时将预处理后的融合光谱数据作为输入变量,利用偏最小二乘回归对煤炭发热量进行建模。实验结果表明,NIRS-XRF联用方法对定标集煤样发热量预测的线性相关度系数(R2)为0.995,对验证集煤样发热量预测的最小均方根误差、平均相对误差和标准偏差分别为0.24 MJ/kg,0.61%和0.05 MJ/kg,测量重复性满足小于0.12 MJ/kg的国家标准。NIRS-XRF联用的煤炭发热量高稳定检测方法有望推广应用于火力发电、煤化工、冶金、水泥和焦化等“高碳”行业,助力我国按期实现碳中和目标。
近红外光谱 X射线荧光光谱 光谱融合 煤炭发热量 高稳定检测 near infrared spectroscopy (NIRS) X-ray fluorescence (XRF) spectral fusion coal calorific value high-stability analysis 
光学 精密工程
2023, 31(13): 1880
作者单位
摘要
1 山西大学 光电研究所 量子光学与光量子器件国家重点实验室,太原 030006
2 山西大学 激光光谱研究所 量子光学与光量子器件国家重点实验室,太原 030006
3 山西大学 极端光学协同创新中心,太原 030006
4 中国空间技术研究院西安分院,西安 710000
通过选定低噪声电压基准芯片作为光电二极管的稳定偏压,采用低暗电流光电二极管,设计外围跨阻放大电路,利用低温漂系数元件,温控及电磁屏蔽等,研发低噪声光电探测器,并通过低频段强度噪声评估系统对其噪声进行测试评估。实验结果表明:所研发的低噪声探测器在空间引力波频段的电子学噪声谱密度在1.649×10-5 V/Hz1/2以下,在0.1 mHz处为1.649×10-5 V/Hz1/2,在1 mHz处为6.95×10-6 V/Hz1/2,在1 Hz处为7.07×10-8 V/Hz1/2;在8 mW激光入射光电二极管时,探测器抬高为40 dB。该探测器噪声性能均小于相应引力波探测中对激光强度噪声的要求,可为引力波探测中激光强度噪声抑制等方面提供关键器件支撑。
激光放大器 空间引力波探测 光电探测 电压噪声表征 对数轴谱密度算法 Laser amplifier Space-based gravitational wave detection Photoelectric detection Voltage noise characterization Logarithmic spectral density algorithm 
光子学报
2023, 52(5): 0552220
田志辉 1,2王树青 3张雷 1,2,*张培华 1,2[ ... ]贾锁堂 1,2
作者单位
摘要
1 山西大学 量子光学与光量子器件国家重点实验室,太原 030006
2 山西大学 极端光学创新研究中心,太原 030006
3 中国石化石油加工研究院,北京 100089
4 山西格盟中美清洁能源研发中心有限公司,太原 030006
基于提出的激光诱导击穿光谱(LIBS)和X射线荧光光谱(XRF)的联用多光谱方法,设计了一种基于软件控制的煤质快速分析仪,该分析仪包括LIBS分析模块、XRF分析模块、送样模块、控制模块和操作软件。该仪器不仅发挥了LIBS全元素分析的长处,还继承了XRF高稳定分析的优点,可用于发电厂对压制煤饼进行快速连续的检测。此外,基于偏最小二乘回归方法对数百个煤样进行了光谱分析建模,并完成了工业测试与性能评价。评估结果表明,所建发热量、灰分、挥发分和硫分定标模型的R2分别为0.973、0.986、0.977、0.979,平均绝对误差分别为0.60 MJ/kg、1.24%、0.18%、0.19%,工业分析的平均SD分别为0.11%、0.49%、0.15%、0.09%。模型结果表现出不错的准确度和良好的稳定性,对所有煤炭工业指标的测量重复性均达到甚至优于国标要求。同时,实测结果表明,该仪器对煤炭发热量、灰分、挥发分、硫分的平均绝对误差分别为0.385 MJ/kg、0.830%、0.496%、0.230%,单次样品检测约需5.5 min,能够满足工业现场的实际需求,为煤炭性质的前瞻性预测开辟了道路。
激光诱导击穿光谱 X射线荧光光谱 联用多光谱 高重复性测量 工业设计 煤质分析 Laser-induced breakdown spectroscopy X-ray fluorescence spectrometry Coupled multi-spectrum High repeatability measurement Industrial design Coal quality analysis 
光子学报
2023, 52(3): 0352109
作者单位
摘要
1 山西大学光电研究所 量子光学与光量子器件国家重点实验室,山西 太原 030006
2 山西大学激光光谱研究所 量子光学与光量子器件国家重点实验室,山西 太原 030006
3 山西大学 极端光学协同创新中心,山西 太原 030006
空间引力波探测频段位于0.1 mHz~1 Hz范围内,在该频段内包含了更大特征质量和尺度的引力波波源信息。目前,基于不同尺寸及空间轨道的大型激光干涉空间引力波探测计划已经逐步实施,其中在干涉仪的激光光源系统中,需要抑制激光强度噪声及频率噪声等,光电探测作为激光噪声表征及抑制的第一级器件,其性能将直接影响激光噪声抑制效果。通过选定低噪声芯片、高稳定偏压系统的基础上,采用自减电路及跨阻放大电路进行整体电路设计;在电磁屏蔽、低温漂系数元件、低噪声供电以及主动温控等技术手段实现了高增益低噪声平衡零拍探测系统的研制;结合快速傅里叶变换法以及对数轴功率谱密度算法对其增益、带宽等性能进行评估测试,并进一步对激光的强度噪声在0.05 mHz~1 Hz频段进行探测表征。实验结果表明:所研发平衡零拍探测电子学噪声谱密度在1 mHz~1 Hz的频率范围内在3.6×10−5 V/Hz1/2以下,小于空间引力波探测对激光光源噪声要求;进一步当入射光功率为400 μW时,测量得到平衡零拍探测系统在0.1 mHz~1 Hz的频率范围内增益在20 dB以上;激光强度噪声谱密度在1 mHz处为3.6×10−2 V/Hz1/2,实现低噪声光电探测及激光强度噪声表征,为空间引力波探测中激光强度噪声表征及抑制等方面提供关键器件支撑。
空间引力波探测 平衡零拍探测 真空噪声 对数轴谱密度算法 space-based gravitational wave detection balanced homodyne detection vacuum noise LPSD 
红外与激光工程
2022, 51(6): 20220300
赵子琳 1,2,*李番 1李瑞鑫 1武志学 1[ ... ]田龙 1,4
作者单位
摘要
1 山西大学光电研究所, 量子光学与光量子器件国家重点实验室山西 太原 030006
2 山西大学, 物理电子工程学院山西 太原 030006
3 山西大学, 激光光谱研究所山西 太原 030006
4 山西大学, 极端光学协同创新中心山西 太原 030006
空间引力波探测面向0.1 mHz~1 Hz频段引力波信号, 在此频段内包含了更大特征质量和尺度的波源信息。目前的空间引力波探测计划都采用大型激光干涉仪装置进行探测, 其中激光光源系统以及无拖曳系统等关键部件的灵敏度都依赖于极低的电学噪声, 然而极低电学噪声受限于航天器上电压基准源的噪声水平, 这就需要研发低噪声电压基准源并对激光强度噪声及关键电学器件的电学噪声进行低频段噪声表征。本文通过选定低噪声基准芯片, 并设计相关外围电路、仿真模拟、电磁屏蔽、采用低温漂系数元件、低噪声供电以及主动温控等技术手段实现了低噪声基准电压源的研制。由于0.1 mHz~1 Hz频段无法用现有商用设备进行此全频段噪声分析, 我们利用高精度数字万用表进行基准源输出电压的测试与采集, 并采用快速傅里叶变换法以及对数轴功率谱密度法将采集的数据进行计算处理, 得到所研发电压基准在0.01 mHz~1 Hz频段的电压噪声谱密度。实验结果表明电压噪声谱密度在0.01 mHz时达到1.85×10-3 V/Hz1/2, 在0.1 mHz~1 Hz的频率范围内在4.89×10-4 V/Hz1/2以下。此低噪声电压基准源的研发及其噪声评估为空间引力波探测中激光强度噪声抑制等方面提供关键器件支撑。
空间引力波探测 电压基准源 电压噪声表征 对数轴谱密度算法 space-based gravitational wave detection voltage reference source voltage noise analysis logarithmic power spectral density method 
量子光学学报
2022, 28(1): 1
作者单位
摘要
窄线宽激光由于其具有单色性好、 稳定度高、 相干长度长等优点, 广泛应用于光电检测领域, 包括相干通信、 精密测量、 光学频率标准、 吸收光谱计量以及光与物质相互作用研究等。 目前频率稳定的氦氖激光器线宽可以达到MHz量级, 分布反馈式(DFB)光纤激光器线宽可达kHz量级, DFB半导体激光器线宽可以达到MHz量级, 然而光栅反馈半导体激光器可以实现百kHz量级线宽的输出。 为了进一步压窄各类激光器线宽, 需要通过反馈控制技术来锁定激光到某一频率参考。 该研究将自行设计的超稳腔作为频率参考, 实现了632.8 nm外腔半导体激光器(ECDL)线宽的有效压窄。 本窄线宽激光产生系统的研制包括超稳腔设计、 光路设计、 ECDL频率控制以及系统集成。 超稳腔采用两镜法布里-珀罗腔(F-P腔)结构, 腔体是膨胀系数约为10-6 K-1的微晶玻璃, 腔镜为一对反射率达99.988 5%(±0.003 5%)的平面镜和凹面镜。 为进一步减小外界环境对F-P腔腔长的影响, 需要对腔体进行温度控制, 本系统采用四片总功率为96 W的半导体制冷片以及水冷散热设计。 同时为了降低声音和空气流动对腔模频率的影响, 将F-P腔置于真空度为10-5 torr的真空室中; 另外为了有效隔振, 腔体与真空室用硅橡胶材料隔离。 该系统采用的ECDL为德国Toptica公司的DL pro系列激光器, 其具有压电陶瓷(PZT)和电流调制两个频率控制端, 响应带宽分别为1 kHz和100 MHz。 激光器的频率控制采用了Pound-Drever-Hall (PDH)锁频技术, 18 MHz的调制频率加载到激光器的电流调制端, 通过对F-P腔的反射信号进行解调获得误差信号, 通过两路反馈控制, 实现了近1 MHz的锁定带宽。 通过对系统的不断优化, 最后将自由运转状态下约300 kHz的激光线宽压窄到了10 kHz量级, 并且系统运行稳定, 连续12小时锁定的频率漂移量约为30 MHz。 该研究研制的632.8 nm窄线宽激光源不仅可以应用到吸收光谱计量领域, 同时也可以在光学面型精密测量领域发挥重要作用。
窄线宽激光 半导体激光器 超稳腔 频率锁定 Narrow linewidth laser Diode laser Ultra-stable cavity Frequency locking 
光谱学与光谱分析
2021, 41(2): 339
侯佳佳 1,*张雷 1,2赵洋 1尹王保 1,2[ ... ]贾锁堂 1,2
作者单位
摘要
1 山西大学激光光谱研究所, 量子光学与光量子器件国家重点实验室, 山西 太原 030006
2 山西大学, 极端光学协同创新中心, 山西 太原 030006
激光诱导击穿光谱(LIBS)定量分析中的自吸收效应不仅会降低谱线强度和增加线宽, 而且使定标结果饱和, 从而影响最终的分析精度。 为了消除该效应的影响, 提出了一种基于共振双线与非共振双线选择的自吸收免疫激光诱导击穿光谱(SAF-LIBS)技术, 通过比较所测谱线强度比值和理论强度比值来确定等离子体的光学薄时刻, 并使用共振线与非共振线来拓展元素含量的可测量范围。 该技术可以分为定标和定量两个分析过程, 其定标过程为: 计算待测元素的共振双线及非共振双线的理论强度比, 通过对比不同待测元素含量样品的共振双线及非共振双线在不同延时下的强度比和理论比, 确定等离子体的光学薄时刻; 使用一系列标准样品建立LIBS非共振线的单变量定标曲线; 利用准光学薄谱线建立共振线和非共振线的SAF-LIBS单变量分段定标曲线。 其定量分析过程为: 先用非共振线和LIBS定标曲线确定未知样品所属的含量分段, 再用准光学薄谱线以及与所属分段的共振或非共振SAF-LIBS定标曲线完成定量分析。 对Cu元素的单变量定标结果表明, 对于共振线, 最佳延时随着样品含Cu量的增加而增加, 且只有当含Cu量低于0.05%时, 才可能获得准光学薄的共振线, 而随着Cu含量的增加, 自吸收变得非常严重, 以至于无法获得光学薄的共振线; 对于非共振线, 当含Cu量在0.01%~30%范围内, 均可获得准光学薄的非共振谱线, 而当Cu含量大于50.7%时, 将无法在等离子体寿命期内捕获到光学薄谱线。 对Cu元素的定量分析结果表明, 基于共振双线与非共振双线的自吸收免疫LIBS技术可以有效地避免自吸收效应的影响, 各分段定标曲线的线性度均大于0.99, 对两个未知样品中Cu元素含量的绝对测量误差分别为0.01%和0.1%, 探测限达到了1.35×10-4%, 最大可测量范围拓展至50.7%。
激光诱导击穿光谱 自吸收效应 光学薄 元素分析 Laser-induced breakdown spectroscopy Self-absorption effect Optically thin Elemental analysis 
光谱学与光谱分析
2020, 40(1): 261
周月婷 1,2,*赵刚 1,2刘建鑫 1,2郭松杰 1,2[ ... ]贾锁堂 1,2
作者单位
摘要
1 山西大学量子光学与光量子器件国家重点实验室, 山西大学激光光谱研究所, 山西 太原 030006
2 山西大学极端光学协同创新中心, 山西 太原 030006
3 山西大学附属中学, 山西 太原 030006
噪声免疫腔增强光外差分子光谱技术(NICE-OHMS)是目前世界上最灵敏的激光吸收光谱技术, 其在低压环境中具有极高的探测灵敏度。 然而当测量样品处于大气压时, NICE-OHMS系统的探测灵敏度会大幅下降。 主要原因之一是大气压下获取最大NICE-OHMS信号幅度的条件与低气压下不同。 通过对大气压NICE-OHMS理论进行分析, 分析了影响信号幅度的参数, 并通过数值模拟来寻找最佳的实验条件。 本文着重讨论影响信号的主要参数包括光学腔腔长L, 调制系数β, 探测相位θ。 其中, 由于在NICE-OHMS中使用DeVoe-Brewer技术将调制频率νm锁定到Fabry-Parot(FP)腔的自由光谱区(FSR)。 因此FP腔的腔长决定了νm, 同时还作用于信号幅度Sfm-no0。 模拟结果显示, 当腔长增大时, 由于νm随之减小, 载波和边带的光谱成分相互重叠部分增大, 因此线型函数的幅度逐渐减小。 而吸收信号幅度随着腔长的增加而逐渐增加, 色散信号幅度先增大后减小, 并且在腔长等于8 cm时达到最大值。 调制系数β会影响频率调制后激光载波和边带的幅度大小, 并且影响信号线型。 随着腔长的增加, 最大信号幅度对应的β值也随之增加。 在相同腔长下, 色散信号的最佳β值小于吸收信号, 更容易使用电光调制器实现。 最后分析了参数的可实现性, 分析了不同种类激光器的频率调谐能力, 压电陶瓷的扫描宽度等。 以乙炔气体为例, 大气压下NICE-OHMS的谱线半宽达到~3 GHz, 而光谱覆盖范围大于10 GHz。 分布反馈式半导体激光器(DFB)与外腔二极管激光器(ECDL)的频率调谐范围可以达到30 GHz以上, 但是由于激光线宽宽, 得到的PDH锁定性能欠佳。 回音壁模式激光器(WGM)和掺饵光纤激光器(EDFL)线宽为百Hz量级, 是目前高灵敏NICE-OHMS系统中常用的光源。 但是WGM目前可以实现了5 GHz的激光频率调谐范围, 而EDFL的外部电压可控制的调谐范围仅为3 GHz。 使用精细度为55 000的腔进行模拟, 调制系数β=1, 腔长大于8 cm时, 可使用WGM激光器实现, 腔长大于25 cm时, 可以使用EDFL激光器实现。 而对于在设计光学腔中常用的伸缩长度为25 μm的PZT, 随着腔长的增加, 对应的腔模频移范围逐渐减小, 在腔长为典型的40 cm时, 扫描范围大于12 GHz。
大气压样品 理论模拟 数值分析 Fabry-Perot腔 NICE-OHMS NICE-OHMS Atmospheric Samples Theoretical simulation Numerical analysis Fabry-Perot cavity 
光谱学与光谱分析
2020, 40(3): 706

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!