首页 > 论文 > 激光与光电子学进展 > 55卷 > 6期(pp:61201--1)

编码孔径成像光谱仪中编码元形变的分析校正

Analysis and Correction of Coded Pixel Distortion in Coded Aperture Imaging Spectrometer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在编码孔径成像光谱仪中, 由于数字微镜器件(DMD)工作在倾斜光路中, 导致编码元在探测器上产生非对称形变, 解码时无法确定所获编码图像各像素对应的编码方式。为解决这一问题, 提出“非对称形变的规则条纹校正”方法, 通过规则条纹在探测器上产生变化, 直观地观察编码元形变, 根据已知条纹规则, 即可定量分析图像的形变量并进行校正。该方法可以保证在系统全视场清晰成像的前提下实现对编码图像的校正。首先介绍了所设计光谱仪的成像原理以及编码元的形变原因, 其次在实验过程中调节探测器以获得全清晰视场, 最后利用提出的方法对编码图像进行处理。实验表明, 处理后图像与理论值的相似度比未处理时高37.87%, 图像恢复DMD加载的图样形状, 为后续的解码运算奠定了基础。

Abstract

Since the digital mircomirror device (DMD) is working in slant optical path in the coded aperture imaging spectrometer, the coded pixel will generate unsymmetrical distortion on detector, which will make it unable to determine the coded method corresponding to each pixel of obtained coded image when decoding. In order to solve this problem, this paper proposes a method of "unsymmetrical deformation regular stripe calibration". Through the changes that the regular stripe produces on the detector, the deformation of the coded pixel is visually observed. According to the known stripe rule, the deformation of the image can be quantitatively analyzed and corrected. This method can ensure the correction of the coded image under the premise of clear imaging of the entire field of view of the system. Firstly, the imaging principle of the designed spectrometer and the deformation reason of the coded pixel are introduced. Secondly, the detector is adjusted during the experiment to obtain a full-clear field of view. Finally, the proposed method is used to process the coded image. Experiments show that the similarity between the processed image and the theoretical value is 37.87% higher than that of the unprocessed image. The image restores the pattern shape loaded by the DMD, which lays the foundation for the next decoded operation.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH744

DOI:10.3788/lop55.061201

所属栏目:仪器,测量与计量

基金项目:国家林业公益性资助项目(201204515)

收稿日期:2017-09-26

修改稿日期:2017-11-07

网络出版日期:--

作者单位    点击查看

朱丹彤:中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室, 吉林 长春 130033中国科学院大学, 北京 100049
沈宏海:中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室, 吉林 长春 130033
杨名宇:中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室, 吉林 长春 130033
陈成:中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室, 吉林 长春 130033
南童凌:中国科学院长春光学精密机械与物理研究所航空光学成像与测量重点实验室, 吉林 长春 130033中国科学院大学, 北京 100049

联系人作者:朱丹彤(283417095@qq.com)

备注:朱丹彤(1993-), 女, 硕士研究生, 助理研究员, 主要从事成像光谱仪方面的研究。E-mail: 283417095@qq.com

【1】Chen Y R, Sun B, Han T, et al. Densely folded spectral images of a CCD spectrometer working in the full 200-1000 nm wavelength range with high resolution[J]. Optics Express, 2005, 13(25): 10049-10054.

【2】Blanco X P, Orille C M, Couce B, et al. Analytical design of an Offner imaging spectrometer[J]. Optics Express, 2006, 14(20): 9156-9168.

【3】Sperling B A, Hoang J, Kimes W A, et al. Time-resolved surface infrared spectroscopy during atomic layer deposition[J]. Applied Spectroscopy, 2013, 67(9): 1003-1012.

【4】Orille C M, Blanco X P, Núez H G, et al. Two-wavelength anastigmatic Dyson imaging spectrometers[J]. Optics Letters, 2010, 35(14): 2379-2381.

【5】Yoshida Y, Oguma H, Morino I, et al. Mountaintop observation of CO2 absorption spectra using a short wavelength infrared Fourier transform spectrometer[J]. Applied Optics, 2010, 49(1): 71-79.

【6】Zhang C M, Xiangli B, Zhao B C, et al. Research progress of interference image spectroscopy[J]. Infrared, 2000(3): 1-5.
张淳民, 相里斌, 赵葆常, 等. 干涉成像光谱技术研究新进展[J]. 红外, 2000(3): 1-5.

【7】Adler F, Maslowski P, Foltynowicz A, et al. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb[J]. Optics Express, 2010, 18(21): 21861-21872.

【8】Jovanov V, Bunte E, Stiebig H, et al. Transparent Fourier transform spectrometer[J]. Optics Letters, 2011, 36(2): 274-276.

【9】Latvakoski H, Mlynczak M G, Johnson D G, et al. Far-infrared spectroscopy of the troposphere: instrument description and calibration performance[J]. Applied Optics, 2013, 52(2): 264-273.

【10】Latvakoski H, Mlynczak M G, Cageao R P, et al. Far-infrared spectroscopy of the troposphere: calibration with a cold background[J]. Applied Optics, 2014, 53(24): 5425-5433.

【11】Hagen N, Kudenov M W. Review of snapshot spectral imaging technologies[J]. Optical Engineering, 2013, 52(9): 090901.

【12】Wang H B, Hu X Q, Zhang L, et al. Polarization correction for grating dispersive imaging spectrometer[J]. Acta Optica Sinica, 2016, 36(8):0812004.
王宏博, 胡秀清, 张璐, 等. 光栅色散型成像光谱仪的偏振校正方法研究[J]. 光学学报, 2016, 36(8): 0812004.

【13】Gehm M E, John R, Brady D J, et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21): 14013-14027.

【14】Wagadarikar A, John R, Willett R, et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44-B51.

【15】Sun X. Study of optical multi-channel detection technology in visible spectrum[D]. Beijing: University of Chinese Academy of Sciences, 2010.
孙鑫. 可见光多通道目标探测技术研究[D]. 北京: 中国科学院大学, 2010.

【16】Love S P, Graff D L. Full-frame programmable spectral filters based on micro-mirror arrays[C]. SPIE, 2013, 8618: 86180C.

【17】Ma Y, Lü Q B, Liu Y Y, et al. Effect evaluation of optical magnification errors for coded aperture spectrometer[J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 3157-3161.
马原, 吕群波, 刘扬阳, 等. 编码孔径成像光谱仪光学放大率误差影响分析[J]. 光谱学与光谱分析, 2014, 34(11): 3157-3161.

【18】Galvis L, Arguello H, Arce G R. Coded aperture design in mismatched compressive spectral imaging[J]. Applied Optics, 2015, 54(33): 9875-9882.

【19】Parada-Mayorga A, Arce G R. Spectral super-resolution in colored coded aperture spectral imaging[C]. Computational Optical Sensing and Imaging, 2015: CTh2E.2.

【20】Lou J T, Li Y L, Xiong L F. Catadioptric omnidirectional compressive imaging based on coded aperture[J]. Acta Optica Sinica, 2016, 36(4): 0411004.
娄静涛, 李永乐, 熊立夫. 基于编码孔径的折反射全向压缩成像技术[J]. 光学学报, 2016, 36(4): 0411004.

【21】Zhang H. Research on key technologies for coded aperture imaging spectrometer based on DMD[D]. Beijing: University of Chinese Academy of Sciences, 2016.
张昊. 基于DMD的编码孔径成像光谱仪关键技术研究[D]. 北京: 中国科学院大学, 2016.

【22】Li Y. Research on coding aperture spectral imaging technology[D]. Beijing: University of Chinese Academy of Sciences, 2010.
李芸. 编码孔径光谱成像技术研究[D]. 北京: 中国科学院大学, 2010.

【23】Yan P. Research on spectral restoration technique in Hadamard transform imaging spectrometer[D]. Beijing: University of Chinese Academy of Sciences, 2010.
闫鹏. 哈达玛变换光谱仪光谱复原技术研究[D]. 北京: 中国科学院大学, 2010.

【24】He Z Y, Sun L N, Chen L G. Fast computation of threshold based on Otsu criterion[J]. Acta Electronica Sinica, 2013, 41(2): 267-272.
何志勇, 孙立宁, 陈立国. Otsu准则下分割阈值的快速计算[J]. 电子学报, 2013, 41(2): 267-272.

【25】Nie F Y, Li J Q, Zhang P F, et al. A threshold selection method for image segmentation based on Tsallis relative entropy[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071002.
聂方彦, 李建奇, 张平凤, 等. 一种基于Tsallis相对熵的图像分割阈值选取方法[J]. 激光与光电子学进展, 2017, 54(7): 071002.

【26】Ren Y B, Wang Z Y, Yu J H, et al. Comprehensive research on edge detection algorithms in digital image[J]. Computer & Information Technology, 2007(8): 23-26.
任毅斌, 王子嫣, 于吉红, 等. 数字图像中边缘检测算法综合研究[J].计算机与信息技术, 2007(8): 23-26.

【27】Wang X J. Research on image denoising method based on median filter and wavelet transform[D]. Xi′an: Xi′an University of Science and Technology, 2008.
王香菊. 基于中值滤波和小波变换的图像去噪方法研究[D]. 西安: 西安科技大学, 2008.

引用该论文

Zhu Dantong,Shen Honghai,Yang Mingyu,Chen Cheng,Nan Tongling. Analysis and Correction of Coded Pixel Distortion in Coded Aperture Imaging Spectrometer[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061201

朱丹彤,沈宏海,杨名宇,陈成,南童凌. 编码孔径成像光谱仪中编码元形变的分析校正[J]. 激光与光电子学进展, 2018, 55(6): 061201

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF