Author Affiliations
Abstract
1 State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
2 ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
4 Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
Structured illumination microscopy (SIM) achieves super-resolution (SR) by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction. The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain, it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary, besides, the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts. Here, we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets, and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets (the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function (OTF)). Experiments on reconstructing raw datasets including nonbiological, biological, and simulated samples demonstrate that our method has SR capability, high reconstruction speed, and high robustness to aberration and noise.
Structured illumination microscopy image reconstruction spatial domain digital micromirror device (DMD) 
Journal of Innovative Optical Health Sciences
2024, 17(2): 2350021
马旺 1,2千佳 1王思颖 1马睿 1[ ... ]姚保利 1,2,**
作者单位
摘要
1 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西 西安 710119
2 中国科学院大学,北京 100049
将普通光学显微镜的均匀照明替换为光场具有空间结构分布的照明,可为显微镜增添超分辨和光切片的新功能。结构光照明显微(SIM)技术与传统宽场光学显微镜具有良好的结构兼容性,继承了传统光学显微镜非侵入、低光毒性、低荧光漂白、快速成像的优点。其高时空分辨率和三维光切片能力非常适合活体细胞或组织的观测,受到生物医学和光学界的持续关注。快速产生高对比度、高频率的结构光场并进行快速相移和旋转调控是SIM的核心技术。近年来基于数字微镜器件(DMD)调制的SIM(DMD-SIM)发展迅速,它利用DMD高刷新率、高光通量、偏振不敏感的优势,克服了传统器件如物理光栅和液晶空间光调制器在调控速度上的缺点。本综述首先介绍了SIM超分辨和光切片的基本原理,然后着重阐述了DMD-SIM通过光投影和光干涉产生结构光照明及调控光场的方法,对当前的DMD-SIM研究进展进行了归纳评述,总结了DMD-SIM的优缺点,最后对DMD-SIM面临的挑战和发展趋势进行了展望。
光学显微 结构光照明显微 超分辨 光切片 数字微镜器件 
激光与光电子学进展
2024, 61(6): 0618001
Author Affiliations
Abstract
1 International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
2 Institute for Advanced Study, Shenzhen University, Shenzhen, China
3 Fiber Optics Research Centre, School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
4 Departamento de Física, Universidade Federal de Pernambuco, Recife-PE, Brazil
5 Email: hejingsong@szu.edu.cn
High-intensity vortex beams with tunable topological charges and low coherence are highly demanded in applications such as inertial confinement fusion (ICF) and optical communication. However, traditional optical vortices featuring nonuniform intensity distributions are dramatically restricted in application scenarios that require a high-intensity vortex beam owing to their ineffective amplification resulting from the intensity-dependent nonlinear effect. Here, a low-coherence perfect vortex beam (PVB) with a topological charge as high as 140 is realized based on the super-pixel wavefront-shaping technique. More importantly, a globally adaptive feedback algorithm (GAFA) is proposed to efficiently suppress the original intensity fluctuation and achieve a flat-top PVB with dramatically reduced beam speckle contrast. The GAFA-based flat-top PVB generation method can pave the way for high-intensity vortex beam generation, which is crucial for potential applications in ICF, laser processing, optical communication and optical trapping.
digital micromirror device flat-top beam orbital angular momentum perfect vortex beam random fiber laser 
High Power Laser Science and Engineering
2024, 12(1): 010000e5
Yaning Li 1,2†Ruijie Cao 1,2Wei Ren 1,2Yunzhe Fu 1,2[ ... ]Peng Xi 1,2,*
Author Affiliations
Abstract
1 Peking University, College of Future Technology, Department of Biomedical Engineering, Beijing, China
2 Peking University, National Biomedical Imaging Center, Beijing, China
In recent years, notable progress has been achieved in both the hardware and algorithms of structured illumination microscopy (SIM). Nevertheless, the advancement of three-dimensional structured illumination microscopy (3DSIM) has been impeded by challenges arising from the speed and intricacy of polarization modulation. We introduce a high-speed modulation 3DSIM system, leveraging the polarization-maintaining and modulation capabilities of a digital micromirror device (DMD) in conjunction with an electro-optic modulator. The DMD-3DSIM system yields a twofold enhancement in both lateral (133 nm) and axial (300 nm) resolution compared to wide-field imaging and can acquire a data set comprising 29 sections of 1024 pixels × 1024 pixels, with 15 ms exposure time and 6.75 s per volume. The versatility of the DMD-3DSIM approach was exemplified through the imaging of various specimens, including fluorescent beads, nuclear pores, microtubules, actin filaments, and mitochondria within cells, as well as plant and animal tissues. Notably, polarized 3DSIM elucidated the orientation of actin filaments. Furthermore, the implementation of diverse deconvolution algorithms further enhances 3D resolution. The DMD-based 3DSIM system presents a rapid and reliable methodology for investigating biomedical phenomena, boasting capabilities encompassing 3D superresolution, fast temporal resolution, and polarization imaging.
digital micromirror device electro-optic modulation polarization three-dimensional structured illumination microscopy 
Advanced Photonics Nexus
2024, 3(1): 016001
石颖超 1,2张路明 1,2陈飞 1,2苑伟政 1,2虞益挺 1,2,*
作者单位
摘要
1 西北工业大学 宁波研究院 机电学院, 陕西西安70072
2 西北工业大学 空天微纳系统教育部重点实验室 陕西省微纳机电系统重点实验室, 陕西西安71007
数字微镜器件(DMD)作为一种灵活、可编程、可独立寻址的空间光调制器件,广泛地应用于无掩膜光刻、光束整形、全息成像、共焦测量等领域。在光谱成像领域,DMD能够对成像视场进行精细可控的调制,从而代替传统的机械掩膜版和机械扫描结构。综述了近年来DMD在光谱成像领域的研究进展和应用情况,详细论述了基于DMD的编码孔径和推扫式光谱成像系统的光学系统基本结构及工作原理;梳理了基于DMD的光谱成像系统从哈达玛变换光谱成像到推扫式光谱成像的发展脉络;详细介绍了研究人员为克服DMD微镜的衍射以及像面倾斜等像差所做的相关研究工作。最后,总结了基于DMD的光谱成像技术的独特优势,讨论了基于DMD的光谱成像技术未来的发展方向与应用前景。
数字微镜器件 光谱成像 编码孔径 哈达玛变换 推扫式 digital micromirror device spectral imaging coded aperture Hadamard transform push-broom 
光学 精密工程
2023, 31(21): 3096
周牧 1,2,*嵇长银 1,2王勇 1,2曹静阳 1,2
作者单位
摘要
1 重庆邮电大学通信与信息工程学院,重庆 400065
2 移动通信教育部工程研究中心,重庆 400065
为了提高纠缠光量子成像效率,本文采用双步符合计数法快速获取目标成像信息,降低纠缠光量子成像的时间开销。首先,利用透镜和波片组合对激光器产生的泵浦光进行调制,提高周期极化磷酸氧钛钾(PPKTP)晶体自发参量下转换的效率;然后,通过数字微镜器件(DMD)选取测距区域,构造单光子时间脉冲序列差值;其次,利用该差值完成局部符合计数以得到信号和参考光路的延时差;再次,通过控制DMD选取成像区域,对单光子时间脉冲序列进行修正,并利用修正后的序列完成全局符合计数;最后,将符合计数值与灰度值进行映射,得到目标的量子图像。此外,通过与经典量子成像结果相比较,分析了目标距离、测距区域大小和单像素曝光时间对成像结果的影响,同时搭建了实际的量子成像光路以验证本文方法的有效性。
量子纠缠 量子成像 符合计数 数字微镜器件 成像效率 
光学学报
2023, 43(20): 2027003
作者单位
摘要
1 中国科学院上海技术物理研究所, 上海 200083
2 上海科技大学 信息科学与技术学院, 上海 200120
作为常用显示器件,数字微镜器件(DMD)使用传统的脉冲宽度调制(PWM)显示方法受最小脉冲宽度限制,无法满足高帧频显示的需求。文章提出基于光源与DMD复合编码的高帧频显示技术,利用光源调制解决脉冲宽度调制导致的位平面显示时间随位平面等级指数增长的问题。通过构建包含驱动模块、光源和DMD的显示系统,采用低4位光源脉冲宽度调制与高4位DMD显示时间宽度调制相结合的方法,将8位灰度图像的显示帧频提高至2461Hz。
数字微镜器件 高帧频 复合编码 光源调制 脉冲宽度调制 digital micromirror device high frame frequency composite coding illuminant modulation pulse width modulation 
半导体光电
2022, 43(3): 613
作者单位
摘要
北京邮电大学 信息光子学与光通信国家重点实验室,北京 100876
针对基于数字微镜器件的全息显示分辨率受限的问题,提出了一种大尺寸、高分辨率计算全息显示方法。本文利用计算机渲染或相关变换方法生成高分辨率输入图像,利用菲涅尔衍射算法和傅立叶变换并行计算提升全息图的分辨率,根据数字微镜器件特性进行衍射图像的时空复用与动态融合,有效提升计算全息显示的分辨率与动态效率。实验结果表明,该方法可实现大尺寸、高分辨率的动态全息显示效果,突破了数字微镜器件固有的像素数目及分辨率限制,使用像素分辨率为2K的数字微镜器件可显示8K甚至更高分辨率的重建图像,尺寸可以达到82 mm甚至更大。
计算全息 数字微镜器件 高分辨率全息 动态全息 computed holography digital micromirror device high resolution holography dynamic holography 
液晶与显示
2022, 37(5): 625
作者单位
摘要
深圳大学 物理与光电工程学院,教育部/广东省光电子器件与系统重点实验室,广东 深圳 518060
利用数字微镜器件将目标图案投影在样品面的方法相比于传统光照明方式大大提高了光刺激系统的空间选择性,但其光能利用率较小。全息光照射通过调制频谱面实现光能量的重新分布,在实现复杂的选择性光刺激同时,还具备较高的空间分辨率和光能利用率。构建了基于数字微镜器件的高时空分辨率的选择性逐点光刺激系统,通过在数字微镜器件上加载结构变化的二维达曼光栅相位图实现对视场内任意位置和任意时序的选择性逐点光刺激。研究表明,系统不仅能够以不同轨迹(如方形点阵、圆、螺旋线等)对全视场进行逐点的二维扫描,还能够选取感兴趣区域以自定义路径进行逐点扫描。该系统的最大扫描视场可达到400 μm,最小扫描步长为0.204 μm,单个扫描光斑的峰值半高宽最小可达到1.5 μm,单点扫描速度可达10 kHz。本系统适用于需要对样品进行高分辨光刺激或需要对感兴趣区域进行实时刺激的光遗传研究中。
计算全息 选择性逐点光刺激 高分辨 数字微镜器件 达曼光栅 Computer generated hologram Selective point-by-point light stimulation High resolution Digital micromirror device Dammann grating 
光子学报
2022, 51(5): 0551313
作者单位
摘要
安徽工程大学机械工程学院,安徽 芜湖 241000
无掩模光刻技术具有无需物理掩模、成本低、适合大批量生产的优点,在微结构制作中得到了广泛应用。基于数字微镜器件(DMD)的无掩模数字光刻技术具有分辨率高、灵活性好、加工精度高等优势,成为近年来数字光刻领域的研究热点。综述了DMD数字光刻技术的研究进展,包括基于DMD的扫描光刻技术、步进式光刻技术以及灰阶光刻技术,介绍了该方法在集成电路、微光学、三维打印等领域的应用,并总结了目前DMD光刻技术存在的问题及其未来发展趋势。
光学设计 无掩模 数字微镜器件 扫描光刻技术 步进式光刻技术 灰阶光刻技术 
激光与光电子学进展
2022, 59(11): 1100010

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!