作者单位
摘要
深圳大学物理与光电工程学院,光电子器件与系统教育部/广东省重点实验室,广东 深圳 518060
荧光寿命显微成像(FLIM)已经广泛应用于生命科学研究领域,具有高灵敏和高特异性的特点,在对组织微环境进行定量表征方面具有独特优势,但由于成像速度相对较慢,限制了FLIM的活体应用。近年来,随着光电子器件和人工智能等技术的发展,开启了FLIM活体成像新篇章。介绍通过优化硬件和算法两方面提升时域和频域FLIM技术的成像速度,以及其在生物医学基础研究和临床疾病诊断中的应用研究进展。最后,对活体FLIM成像的未来发展进行展望。
荧光寿命显微成像 人工智能 活体成像 癌症诊断 
激光与光电子学进展
2024, 61(6): 0618005
作者单位
摘要
深圳大学物理与光电工程学院,教育部/广东省光电子器件与系统重点实验室,广东 深圳 518060
介绍各种非线性光学显微成像的基本原理,并阐述非线性光学成像的多模态耦合所面临的技术挑战与解决方案。从成像速度、空间分辨率以及信噪比三个方面介绍了多模态非线性光学成像的研究进展,并扩展了多模态非线性光学内窥镜和图像分析方法。最后展望了多模态非线性光学成像的发展趋势和所面临的挑战,以期给相关领域研究人员提供参考。
成像系统 显微成像 非线性光学 多模态光学成像 光学内窥镜 
光学学报
2024, 44(4): 0400002
作者单位
摘要
深圳大学物理与光电工程学院教育部/广东省光电子器件与系统重点实验室,广东 深圳 518060
荧光寿命显微成像(FLIM)常用来检测活细胞内荧光基团的寿命信息,以实现微观定量分析。荧光共振能量转移(FRET)可用来表征能量从供体荧光分子到受体荧光分子的传递过程。将FLIM技术与FRET结合(FLIM-FRET),可以监测活细胞中蛋白质的相互作用、亚细胞器的动态过程等。构建了以细胞膜上转染的绿色荧光蛋白(sfGFP)为供体、以阿霉素(DOX)为受体的FRET纳米体系,利用双光子激发荧光寿命显微成像(TP-FLIM)系统,通过监测FRET纳米体系中供体荧光寿命的变化,研究了药物DOX在细胞中的递送机制和运输效率。此外,进一步采用四种内吞途径抑制剂,对纳米药物的内吞途径进行了评估。结果证明,牛血清白蛋白(BSA)包裹的DOX(BSA-DOX)纳米颗粒通过网格蛋白介导的内吞作用进入细胞。揭示了BSA-DOX纳米颗粒通过网格蛋白介导的内吞作用进入细胞的动态过程。研究表明,FLIM-FRET技术结合定量分析方法可用于区分小分子药物和纳米颗粒与细胞作用的异同。
生物光学 荧光共振能量转移 荧光寿命 细胞膜 
中国激光
2023, 50(3): 0307112
王义强 1,2林方睿 1,2胡睿 1,2刘丽炜 1,2屈军乐 1,2,*
作者单位
摘要
1 深圳大学 物理与光电工程学院, 广东 深圳 518060
2 光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
光学显微成像技术具有实时性、高分辨率和非侵入性等特点,其成像尺度可跨越细胞、组织乃至生命体,极大地拓展了人们对生命本质的认识边界。然而,受限于光学显微成像系统有限的空间带宽积(Space-Bandwidth Product,SBP),常规的光学显微镜难以同时兼具大视场和高分辨率,使得显微成像在大视场生物成像应用中受到较大的限制,例如,对脑神经网络以突触为单位的神经回路成像。近年来,大视场光学显微成像技术得到不断的发展,其SBP的视场相较于传统的光学显微镜有了十倍甚至百倍的提升,在保持高分辨率的基础上拓展了成像视场,从而可以满足生物医学领域重大问题的研究需求。本文介绍了近年来几种典型的大视场光学显微成像技术及其生物医学应用,并对其未来发展做了展望。
光学显微 空间带宽积 大视场成像 活体成像 optical microscopy space-bandwidth product large field-of-view imaging in vivo imaging 
中国光学
2022, 15(6): 1194
作者单位
摘要
深圳大学 物理与光电工程学院,教育部/广东省光电子器件与系统重点实验室,广东 深圳 518060
利用数字微镜器件将目标图案投影在样品面的方法相比于传统光照明方式大大提高了光刺激系统的空间选择性,但其光能利用率较小。全息光照射通过调制频谱面实现光能量的重新分布,在实现复杂的选择性光刺激同时,还具备较高的空间分辨率和光能利用率。构建了基于数字微镜器件的高时空分辨率的选择性逐点光刺激系统,通过在数字微镜器件上加载结构变化的二维达曼光栅相位图实现对视场内任意位置和任意时序的选择性逐点光刺激。研究表明,系统不仅能够以不同轨迹(如方形点阵、圆、螺旋线等)对全视场进行逐点的二维扫描,还能够选取感兴趣区域以自定义路径进行逐点扫描。该系统的最大扫描视场可达到400 μm,最小扫描步长为0.204 μm,单个扫描光斑的峰值半高宽最小可达到1.5 μm,单点扫描速度可达10 kHz。本系统适用于需要对样品进行高分辨光刺激或需要对感兴趣区域进行实时刺激的光遗传研究中。
计算全息 选择性逐点光刺激 高分辨 数字微镜器件 达曼光栅 Computer generated hologram Selective point-by-point light stimulation High resolution Digital micromirror device Dammann grating 
光子学报
2022, 51(5): 0551313
作者单位
摘要
深圳大学物理与光电工程学院,教育部/广东省光电子器件与系统重点实验室,广东 深圳 518060
贝塞尔光束在生物组织中的传输易受到样品散射的影响,从而削弱其自重建能力。本文将生物组织建模为折射率弱波动的湍流模型,在弱散射近似下,结合角谱理论及逐步传输算法对贝塞尔光束在生物组织中的传输及自重建过程进行了理论模拟。利用空间光调制器加载涡旋光束相位和轴棱锥相位的叠加相位全息图来调制高斯光束,以产生可调控的贝塞尔光束。结果表明:贝塞尔光束经过生物组织的相位扰动后,重建光束的无衍射距离大大缩短,光强远低于原光束,且生物组织越厚,重建光束的光强越低;轴棱锥的锥角决定了重建贝塞尔光束的中心亮斑或最内环形旁瓣的尺寸,但对重建贝塞尔光束无衍射距离的影响不大;同时,低阶贝塞尔光束展现出了更好的自重建能力。
医用光学 贝塞尔光束 湍流模型 角谱理论 空间光调制器 
中国激光
2022, 49(5): 0507302
作者单位
摘要
深圳大学物理与光电工程学院教育部/广东省光电子器件与系统重点实验室,广东 深圳 518060

贝塞尔光束具有无衍射、自重建等特性,在光镊、生物成像等领域具有重要的应用价值。基于角谱理论,分析了贝塞尔光束被障碍物遮挡后的自重建行为,提出利用互相关系数来表征贝塞尔重建光束和原光束截面光强分布的相似性,从而在理论模拟中确定恢复距离,并得到障碍物不同参数对贝塞尔光束自重建的影响。理论模拟结果表明,恢复距离和障碍物大小并非简单的线性关系,障碍物只有在阻挡更多的光束旁瓣时,恢复距离才会增加,而且离轴障碍物比轴上障碍物需要更长的恢复距离;对于轴上障碍物而言,当其尺寸小于高阶贝塞尔光束的中空区域时,高阶贝塞尔光束有着更强的自愈能力。同时进行了实验验证,利用空间光调制器产生可调控的贝塞尔光束用于验证仿真结果,实验结果与仿真结果吻合,说明基于角谱理论的互相关系数法可以用于精准验证贝塞尔光束的自重建特性。

医用光学与生物技术 贝塞尔光束 自重建 角谱理论 空间光调制器 
激光与光电子学进展
2022, 59(6): 0617021
作者单位
摘要
深圳大学物理与光电工程学院, 电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
相干拉曼散射显微技术作为一种新型的成像技术,具有无标记、高特异性、非侵入等优点,已被广泛用于化学结构及物质成分分析。近年来,光子学、生物医学和显微成像技术等领域的相互交叉和融合发展,极大地推动了相干拉曼散射显微成像技术在生物医学领域的应用。简要介绍了相干拉曼散射显微成像的基本原理、分类、系统构成,同时概述了相干拉曼散射显微成像技术近年来在生物医学领域的应用,包括检测、脂类分析和蛋白质构象变化等,最后对其未来发展进行了展望。
生物医学 相干拉曼散射显微技术 相干反斯托克斯拉曼散射 无标记成像 受激拉曼散射成像 
中国激光
2020, 47(2): 0207005
作者单位
摘要
深圳大学光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
无标记显微成像技术包括光学相干层析、光声成像、非线性成像和微球透镜成像等技术。概述了目前常用的无标记显微成像技术,并对各种传统和先进的成像原理进行了总结。详细介绍了各种无标记成像技术的优缺点和最新研究进展,以及此类成像技术在各领域的应用,并对基于无标记显微技术的多模态成像技术的未来发展进行了展望。
成像系统 无标记显微成像 非线性成像技术 显微成像 生物光学 
激光与光电子学进展
2019, 56(7): 070005
作者单位
摘要
1 长春理工大学 理学院, 吉林 长春 130022
2 深圳大学 光电工程学院, 广东 深圳 518060
本论文构建了基于近红外量子点InP/ZnS和Cy7(C45H44K3N3O16S4)的荧光共振能量转移(FRET)体系, 完成了不同pH值和不同浓度下的FRET体系转换效率的检测。检测结果显示: 当量子点浓度保持不变时, 随着染料浓度的增加, 体系转换效率也随之增加, 当InP/ZnS量子点与Cy7浓度比为1∶250时, 转换效率高达68%。细胞测试结果表明, FRET体系对pH值有较高敏感度, 对细胞微环境pH值的检测精度可达01, 该体系可以作为敏感型FRET探针用于生物微环境检测。
量子点 荧光共振能量转移 近红外 pH敏感 quantum dots FRET near infrared pH sensitive 
中国光学
2018, 11(1): 74

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!