首页 > 论文 > 激光与光电子学进展 > 55卷 > 9期(pp:91006--1)

一种基于HDR技术的交通标志牌检测和识别方法

A Method of Traffic Sign Detection and Recognition Based on HDR Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

现有基于低动态范围(LDR)图像的识别方法在良好的曝光环境下, 能取得较为理想的结果, 但其容易受照明条件的限制以及天气状况的影响, 稳健性不强。为此, 提出一种基于高动态范围(HDR)技术的识别方法。通过改进的逆色调映射算法, 对相机捕获的不同曝光的LDR图像进行自适应亮度范围拉伸, 分别生成明暗两幅子图像, 再采用多曝光融合算法对子图像进行融合, 生成一幅HDR图像代替原LDR图像进行识别。实验结果表明, 该方法可较好地提高交通标志牌的检测与识别正确率。

Abstract

The existing methods of traffic sign detection and recognition based on low dynamic range (LDR) images can achieve ideal results in good exposure environment. But they are vulnerable to the limitation of lighting and weather conditions, leading to weak robustness. For this reason, we propose a recognition method based on the high dynamic range (HDR) technology. The captured LDR images under different exposure conditions are adaptively stretched in the luminance range by the improved inverse tone mapping algorithm, generating two sub-images separately. Then an HDR image produced by the multi-exposure fusion algorithm is used instead of the original LDR images for recognition. The experimental results show that the proposed method can greatly improve the accuracy of traffic sign detection and recognition.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/lop55.091006

所属栏目:图像处理

基金项目:天津市科技支撑计划重点资助项目(16YFZCGX00760)、中国国家留学基金

收稿日期:2018-03-21

修改稿日期:2018-04-06

网络出版日期:2018-04-23

作者单位    点击查看

张淑芳:天津大学电气自动化与信息工程学院, 天津 300072
朱彤:天津大学电气自动化与信息工程学院, 天津 300072

联系人作者:朱彤(zhutong@tju.edu.cn); 张淑芳(shufangzhang@tju.edu.cn);

【1】de la Escalera A, Moreno L E, Salichs M A, et al. Road traffic sign detection and classification[J]. IEEE Transactions on Industrial Electronics, 1997, 44(6): 848-859.

【2】Ruta A, Li Y M, Liu X H. Real-time traffic sign recognition from video by class-specific discriminative features[J]. Pattern Recognition, 2010, 43(1): 416-430.

【3】Li H, Qiu T S, Song H Y, et al. Separation algorithm of traffic signs based on curvature scale space corner detection[J]. Acta Optica Sinica, 2015, 35(1): 0115002.
李厚杰, 邱天爽,宋海玉, 等. 基于曲率尺度空间角点检测的交通标志分离算法[J]. 光学学报, 2015, 35(1): 0115002.

【4】Bascon S M, Rodriguez J A, Arroyo S L, et al. An optimization on pictogram identification for the road-sign recognition task using SVMs[J]. Computer Vision and Image Understanding, 2010, 114(3): 373-383.

【5】Kus M C, Gokmen M, Etaner-Uyar S. Traffic sign recognition using scale invariant feature transform and color classification[C]∥Proceedings of International Symposium on Computer and Information Sciences, IEEE, 2008: 1-6.

【6】Ellahyani A, Ansari M E, Jaafari I E. Traffic sign detection and recognition based on random forests[J]. Applied Soft Computing, 2016, 46: 805-815.

【7】Xu Y, Wei Z Y. An improved traffic sign image recognition algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(2): 021001.
徐岩, 韦镇余. 一种改进的交通标志图像识别算法[J]. 激光与光电子学进展,2017, 54(2): 021001.

【8】Sermanet P, Lecun Y. Traffic sign recognition with multi-scale convolutional networks[C]∥Proceedings of International Joint Conference on Neural Networks, IEEE, 2011: 2809-2813.

【9】Qian R, Zhang B, Yue Y, et al. Robust Chinese traffic sign detection and recognition with deep convolutional neural network[C]∥Proceedings of International Conference on Natural Computation, IEEE, 2016: 791-796.

【10】Vedaldi A. "SIFT_MOSAIC" example[EB/OL]. [2018-01-09]. http:∥www.vlfeat.org/index.html.

【11】Wang T H, Chiu C W, Wu W C, et al. Pseudo-multiple-exposure-based tone fusion with local region adjustment[J]. IEEE Transactions on Multimedia, 2015, 17(4): 470-484.

【12】Mertens T, Kautz J, Reeth F V. Exposure fusion[C]∥Proceedings of Pacific Conference on Computer Graphics and Applications, IEEE, 2007: 382-390.

【13】Wang M, Wang Y S, Liu T, et al. Chinese painting classification method using image entropy and complex network[J]. Laser & Optoelectronics Progress, 2017, 54(2): 021008.
王民, 王羽笙, 刘涛, 等. 利用图像熵和复杂网络的中国画分类方法[J]. 激光与光电子学进展, 2017, 54(2): 021008.

【14】Standardization Administration of the People′s Republic of China. Road traffic signs and marking, second parts: Road traffic signs: GB 5768.1-2009[S]. Beijing: Standards Press of China, 2009.
中国国家标准化管理委员会. 道路交通标志和标线第二部分道路交通标志: GB 5768.1-2009[S]. 北京: 中国标准出版社, 2009.

【15】Su X, Chen X D, Xu H Y, et al. Adaptive window local matching algorithm based on HSV color space[J]. Laser & Optoelectronics Progress, 2018, 55(3): 031103.
苏修, 陈晓冬, 徐怀远, 等. 基于HSV颜色空间的自适应窗口局部匹配算法[J]. 激光与光电子学进展, 2018, 55(3): 031103.

【16】Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.

【17】Zhao J D, Bai Z M, Chen H B. Research on road traffic sign recognition based on video image[C]∥Proceedings of International Conference on Intelligent Computation Technology and Automation, IEEE, 2017: 110-113.

【18】Bay H, Tuytelaars T, Gool L V. SURF: speeded up robust features[J]. Computer Vision and Image Understanding, 2006, 110(3): 404-417.

【19】Luo Y, Chen Y Z. Robust matching algorithm based on SURF[C]∥Proceedings of International Computer Conference on Wavelet Active Media Technology and Information Processing, IEEE, 2016: 7-10.

引用该论文

Zhang Shufang,Zhu Tong. A Method of Traffic Sign Detection and Recognition Based on HDR Technology[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091006

张淑芳,朱彤. 一种基于HDR技术的交通标志牌检测和识别方法[J]. 激光与光电子学进展, 2018, 55(9): 091006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF