Journal of Innovative Optical Health Sciences, 2012, 5 (4): 1250027, Published Online: Jan. 10, 2019   

STUDYING THE ROLE OF MACROPHAGES IN CIRCULATING PROSTATE CANCER CELLS BY IN VIVO FLOW CYTOMETRY

Author Affiliations
1 Department of Chemistry, Fudan University, Shanghai, P. R. China
2 Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
3 Department of Urology, Xinhua Hospital Shanghai Jiao Tong University 1665, Kongjiang Road, Shanghai 200092, P. R. China
4 Med-X Research Institute, Shanghai Jiao Tong University 1954, Huashan Road, Shanghai 200240, P. R. China
5 School of Biomedical Engineering Shanghai Jiao Tong University, Shanghai, P. R. China
Abstract
Metastasis is a very complicated multi-step process and accounts for the low survival rate of the cancerous patients. To metastasize, the malignant cells must detach from the primary tumor and migrate to secondary sites in the body through either blood or lymph circulation. Macrophages appear to be directly involved in tumor progression and metastasis. However, the role of macrophages in affecting cancer metastasis has not been fully elucidated. Here, we have utilized an emerging technique, namely in vivo flow cytometry (IVFC) to study the depletion kinetics of circulating prostate cancer cells in mice and determine how depletion of macrophages by the liposome-encapsulated clodronate affects the depletion kinetics. Our results show different depletion kinetics of PC-3 cells between the macrophage-deficient group and the control group. The number of circulating tumor cells (CTCs) in the macrophage-deficient group decreases in a slower manner compared to the control mice group. The differences in depletion kinetics indicate that the absence of macrophages facilitates the stay of prostate cancer cells in circulation. In addition, our imaging data suggest that macrophages might be able to arrest, phagocytose and digest PC-3 cells. Therefore, phagocytosis may mainly contribute to the depletion kinetic differences. The developed methods elaborated here would be useful to study the relationship between macrophages and tumor metastasis in small animal cancer models.
References

[1] E. Ruoslahti, "How cancer spreads," Sci. Amer. 275, 72-77 (1996).

[2] L. Weiss, "Metastatic inefficiency," Adv. Cancer Res. 54, 159-211 (1990).

[3] C. W. Wong, A. Lee, L. Shientag, J. Yu, Y. Dong, G. Kao, A. B. Al-Mehdi, E. J. Bernhard, R. J. Muschel, "Apoptosis: An early event in metastatic inefficiency," Cancer Res. 61, 333-338 (2001).

[4] J. E. Damber, G. Aus, "Prostate cancer," Lancet 371, 1710-1721 (2008).

[5] A. W. Hsing, A. P. Chokkalingam, "Prostate cancer epidemiology," Front. Biosci. 11, 1388-1413 (2006).

[6] A. Sica, V. Bronte, "Altered macrophage differentiation and immune dysfunction in tumor development," J. Clin. Invest. 117, 1155-1166 (2007).

[7] S. J. Oosterling, G. J. V. D. Bij, G. A. Meijer, C. W. Tuk, E. V. Rooijen, N. V. Rooijen, S. Meijer, J. R. V. D. Sijp, R. H. Beelen, M. V. Egmond, "Macrophages direct tumour histology and clinical outcome in a colon cancer model," J. Pathol. 207, 147-155 (2005).

[8] G. Heuff, H. S. Oldenburg, H. Boutkan, J. J. Visser, R. H. Beelen, N. V. Rooijen, C. D. Dijkstra, S. Meyer, "Enhanced tumour growth in the rat liver after selective elimination of Kupffer cells," Cancer Immunol. Immunother. 37, 125-130 (1993).

[9] L. G. Bayon, M. A. Izquierdo, I. Sirovich, N. V. Rooijen, R. H. Beelen, S. Meijer, "Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver," Hepatology 23, 1224-1231 (1996).

[10] J. Condeelis, J. W. Pollard, "Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis," Cell 124, 263-266 (2006).

[11] J. Y. Shih, A. Yuan, J. J. W. Chen, P. C. Yang, "Tumor-associated macrophage: Its role in cancer invasion and metastasis," J. Cancer Molec. 2, 101-106 (2006).

[12] E. Y. Lin, A. V. Nguyen, R. G. Russell, J. W. Pollard, "Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy," J. Exp. Med. 193, 727-740 (2001).

[13] I. F. Lissbrant, P. Stattin, P. Wikstrom, J. E. Damber, L. Egevad, A. Bergh, "Tumor associated macrophages in human prostate cancer: Relation to clinicopathological variables and survival," Int. J. Oncol. 17, 445-451 (2000).

[14] P. Seiler, P. Aichele, B. Odermatt, H. Hengartner, R. M. Zinkernagel, R. A. Schwendener, "Crucial role of marginal zone macrophages and marginal zone metallophils in the clearance of lymphocytic choriomeningitis virus infection," Eur. J. Immunol. 27, 2626-2633 (1997).

[15] J. W. Tyner, O. Uchida, N. Kajiwara, E. Y. Kim, A. C. Patel, M. P. O'Sullivan, M. J. Walter, R. A. Schwendener, D. N. Cook, T. M. Danoff, M. J. Holtzman, "CCL5/CCR5 interaction provides anti-apoptotic signals for macrophage survival during viral infection," Nat. Med. 11, 1180-1187 (2005).

[16] N. V. Rooijen, A. M. Sanders, T. K. V. D. Berg, "Apoptosis of macrophages induced by liposomemediated intracellular delivery of clodronate and propamidine," J. Immunol. Methods 193, 93-99 (1996).

[17] N. V. Rooijen, A. Sanders, "Liposomes mediated depletion of macrophages: Mechanism of action, preparation of liposomes and applications," J. Immunol. Methods 174, 83-93 (1994).

[18] N. V. Rooijen, J. Bakker, A. Sanders, "Transient suppression of macrophage functions by liposomeencapsulated drugs," Trends Biotechnol. 15, 178-185 (1997).

[19] J. Novak, I. Georgakoudi, X. Wei, A. Prossin, C. P. Lin, "In vivo flow cytometer for realtime detection and quantification of circulating cells," Opt. Lett. 29, 77-79 (2004).

[20] I. Georgakoudi, N. Solban, J. Novak, W. L. Rice, X. Wei, T. Hasan, C. P. Lin, "In vivo flow cytometry: A new method for enumerating circulating cancer cells," Cancer Res. 64, 5044-5047 (2004).

[21] S. Boutrus, C. Greiner, D. Hwu, M. Chan, C. Kuperwasser, C. P. Lin, I. Georgakoudi, "Portable two-color in vivo flow cytometer for real-time detection of fluorescently-labelled circulating cells," J. Biomed. Opt. 12, 020507-1-020507-3 (2007).

[22] D. A. Sipkins, X. Wei, J. W. Wu, J. M. Runnels, D. Cote, T. K. Means, A. D. Luster, D. T. Scadden, C. P. Lin, "In vivo imaging of specialized bone marrow endothelial microdomains for tumor engraftment," Nature 435, 969-973 (2005).

[23] W. He, H. F. Wang, L. C. Hartmann, J. X. Cheng, P. S. Low, "In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry," Proc. Natl. Acad. Sci. USA 104, 11,760-11,765 (2007).

[24] Y. Li, J. Guo, C. Wang, Z. Fan, G. Liu, C. Wang, Z. Gu, D. Damm, A. Mosig, X. Wei, "Circulation times of prostate cancer and hepatocellular carcinoma cells by in vivo flow cytometry," Cytometry A 79, 848-854 (2011).

[25] V. V. Tuchin, A. Tarnok, V. P. Zharov, "In vivo flow cytometry: A horizon of opportunities," Cytometry A 79, 737-745 (2011).

[26] C. M. Pitsillides, J. M. Runnels, J. A. Spencer, L. Zhi, M. X. Wu, C. P. Lin, "Cell labeling approaches for fluorescence-based in vivo flow cytometry," Cytometry A 79, 758-765 (2011).

[27] Z. C. Fan, Y. Jun, G. D. Liu, X. Y. Tan, X. F. Weng, W. Z. Wu, J. Zhou, X. B. Wei, "Real-time monitoring of rare circulating hepatocellular carcinoma cells in an orthotopic model by in vivo flow cytometry assesses resection on metastasis," Cancer Res. 72, 2683-2691 (2012).

[28] M.Yin, S. Li, L.Yuan, H.Dai, "Separation, cultivation and identification of mouse peritoneal macrophages," Med. J. Wuhan University 27, 203-205 (2006).

[29] K. H. V. D. Hoek, S. Maddocks, C. M. Woodhouse, N. V. Rooijen, S. A. Robertson, R. J. Norman, "Intrabursal injection of clodronate liposomes causes macrophage depletion and inhibits ovulation in the mouse ovary," Biol. Reprod. 62, 1059-1066 (2000).

[30] N. V. Rooijen, N. Kors, G. Kraal, "Macrophage subset repopulation in the spleen: Differential kinetics after liposome-mediated elimination," J. Leukoc. Biol. 45, 97-104 (1989).

[31] M. B. Jordan, N. V. Rooijen, S. Izui, J. Kappler, P. Marrack, "Liposomal clodronate as a novel agent for treating autoimmune hemolytic anemia in a mouse model," Blood 101, 594-601 (2003).

[32] S. J. Huh, S. Liang, A. Sharma, C. Dong, G. P. Robertson, "Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development," Cancer Res. 70, 6071-6082 (2010).

[33] A. E. Koch, P. J. Polverini, S. L. Kunkel, L. A. Harlow, L. A. DiPietro, V. M. Elner, S. G. Elner, R. M. Strieter, "Interleukin-8 as a macrophage-derived mediator of angiogenesis," Science 258, 1798-1801 (1992).

[34] J. J. Chen, P. L. Yao, A. Yuan, T. M. Hong, C. T. Shun, M. L. Kuo, Y. C. Lee, P. C. Yang, "Upregulation of tumor interleukin-8 expression by infiltrating macrophages: Its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer," Clin. Cancer Res. 9, 729-737 (2003).

JIN GUO, ZHICHAO FAN, ZHENGQIN GU, XUNBIN WEI. STUDYING THE ROLE OF MACROPHAGES IN CIRCULATING PROSTATE CANCER CELLS BY IN VIVO FLOW CYTOMETRY[J]. Journal of Innovative Optical Health Sciences, 2012, 5(4): 1250027.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!