作者单位
摘要
广州医科大学 生物医学工程学院, 广东 广州 511436
液体活检技术的兴起为黑色素瘤的快速、准确诊断提供了新的机遇。然而,普通循环肿瘤细胞活检基于上皮黏附蛋白进行阳性富集,但信号标记的有机荧光探针存在量子效率低的问题,导致检测黑色素瘤循环肿瘤细胞时准确率和灵敏度较低。本文以高量子效率的金属卤化物钙钛矿量子点作为信号标记物,以黑色素瘤来源的外泌体作为生物识别分子,构建了一种用于黑色素瘤液体活检的循环肿瘤细胞检测新策略。与商品化的上皮细胞黏附蛋白富集策略相比,本研究报道的复合探针检测新策略,其检测灵敏度提高了一个数量级,并且具有良好的亲水性和低毒性。实验结果证明了外泌体引导的金属卤化物钙钛矿量子点指示的黑色素瘤循环肿瘤细胞检测新策略具有理想的应用前景。
黑色素瘤 外泌体 循环肿瘤细胞 金属卤化物钙钛矿 液体活检 melanoma exosome circulating tumor cells metal halide perovskite liquid biopsy 
发光学报
2024, 45(1): 157
作者单位
摘要
1 上海交通大学生物医学工程学院Med-X研究院,上海 200030
2 佛山市中医院肿瘤中心,广东 佛山 528199
3 北京大学肿瘤医院肿瘤发生与转化研究教育部重点实验室,北京 100142
4 北京大学医学部医学技术研究院,北京 100191
5 北京大学生物医学工程系,北京 100081
6 北京大学国际癌症研究院,北京 100191
癌症是人类生命的一大威胁,而肿瘤的侵袭和转移是癌症患者死亡的主要原因之一。在这一复杂过程中,循环肿瘤细胞(CTC)等血液循环中的粒子起到十分关键的作用,所以监测血液循环中的CTC和其他肿瘤相关的粒子可以促进肿瘤转移的研究。光学活体流式细胞仪(IVFC)是一种基于激光的新兴技术,可在体内无创监测循环细胞,包括CTC等肿瘤相关的颗粒。这一强大的工具已被广泛应用于癌症相关的多个领域,尤其是肿瘤转移研究。因此,总结分析IVFC在肿瘤转移研究中的应用具有重要意义。本文介绍IVFC的检测原理,总结基于荧光发光、光声效应、计算机视觉等光学技术的荧光活体流式细胞仪、光声活体流式细胞仪、图像活体流式细胞仪等IVFC分类,对IVFC应用于肝癌、前列腺癌、乳腺癌、黑色素瘤等肿瘤转移的相关研究进行综述,并总结和展望IVFC对肿瘤转移研究的应用。
活体流式细胞仪 肿瘤转移 循环肿瘤细胞 无创监测 光学成像 
激光与光电子学进展
2024, 61(2): 0211002
作者单位
摘要
1 合肥工业大学仪器科学与光电工程学院, 测量理论与精密仪器安徽省重点实验室, 安徽 合肥230009
2 中国石油大学(华东)控制科学与工程学院, 山东 青岛 266580
液体活检是近些年新兴的体外诊断技术, 通过从肿瘤患者外周血中筛选出肿瘤细胞来检测和分析其上携带的各种生命信息, 具有便捷、侵入性小、检测精度高等特点。循环肿瘤细胞(Circulating Tumor Cells, CTCs)作为液体活检的重要标志物之一, 对于癌症的早期检测、疗效评估以及预后监测具有重要意义。但是血液中CTCs的含量非常少, 通常每毫升血液中仅含有1~10个CTCs, 还有数以百亿计的血细胞, 所以CTCs的富集以及筛选是液体活检中的难题, 对CTCs所携带的生命信息进行解析是关键。总结了经典的CTCs分离方法并重点概括了CTCs的检测技术。
液体活检 微流控技术 循环肿瘤细胞(CTCs) 表面增强拉曼散射 检测技术 liquid biopsy microfluidics technology circulating tumor cells surface enhancement of Raman scattering detection technology 
光学与光电技术
2022, 20(4): 1
Author Affiliations
Abstract
1 Beijing Key Laboratory for Optoelectronic Measurement Technology, Key Laboratoryfor Optoelectronic Measurement Technology and Instruments of Ministry of Education Beijing Information Science & Technology University Beijing 100192, P. R. China
2 Med-X Research Institute and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
The fluorescence-based in vivo flow cytometry (IVFC) is an emerging tool to monitor circulating cells in vivo. As a noninvasive and real-time diagnostic technology, the fluorescence-based IVFC allows long-term monitoring of circulating cells without changing their native biological environment. It has been applied for various biological applications (e.g., monitoring circulating tumor cells). In this work, we will review our recent works on fluorescence-based IVFC. The operation principle and typical biological applications will be introduced. In addition, the recent advances in IVFC flow cytometry based on photoacoustic effects and other label-free detection methods such as imaging-based methods, diffuse-light methods, hybrid multimodality methods and multispectral methods are also summarized.
In vivo flow cytometry circulating tumor cells (CTCs) CTC clusters nanoparticles fluorescence 
Journal of Innovative Optical Health Sciences
2019, 12(6):
Author Affiliations
Abstract
1 Department of Chemistry, Fudan University, Shanghai, P. R. China
2 Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
3 Department of Urology, Xinhua Hospital Shanghai Jiao Tong University 1665, Kongjiang Road, Shanghai 200092, P. R. China
4 Med-X Research Institute, Shanghai Jiao Tong University 1954, Huashan Road, Shanghai 200240, P. R. China
5 School of Biomedical Engineering Shanghai Jiao Tong University, Shanghai, P. R. China
Metastasis is a very complicated multi-step process and accounts for the low survival rate of the cancerous patients. To metastasize, the malignant cells must detach from the primary tumor and migrate to secondary sites in the body through either blood or lymph circulation. Macrophages appear to be directly involved in tumor progression and metastasis. However, the role of macrophages in affecting cancer metastasis has not been fully elucidated. Here, we have utilized an emerging technique, namely in vivo flow cytometry (IVFC) to study the depletion kinetics of circulating prostate cancer cells in mice and determine how depletion of macrophages by the liposome-encapsulated clodronate affects the depletion kinetics. Our results show different depletion kinetics of PC-3 cells between the macrophage-deficient group and the control group. The number of circulating tumor cells (CTCs) in the macrophage-deficient group decreases in a slower manner compared to the control mice group. The differences in depletion kinetics indicate that the absence of macrophages facilitates the stay of prostate cancer cells in circulation. In addition, our imaging data suggest that macrophages might be able to arrest, phagocytose and digest PC-3 cells. Therefore, phagocytosis may mainly contribute to the depletion kinetic differences. The developed methods elaborated here would be useful to study the relationship between macrophages and tumor metastasis in small animal cancer models.
Prostate cancer macrophages liposome-encapsulated clodronate in vivo flow cytometer circulating tumor cells 
Journal of Innovative Optical Health Sciences
2012, 5(4): 1250027
Author Affiliations
Abstract
1 State Key Lab of Modern Optical Instrumentation, Zhejiang University 38 Zheda Rd., Hangzhou 310027, P. R. China
2 School of Aeronautics and Astronautics, Zhejiang University 38 Zheda Rd., Hangzhou 310027, P. R. China
Cancer (malignant tumor) is one of the serious threats to human life, causing 13% of all human deaths. A crucial step in the metastasis cascade of cancer is hematogenous spreading of tumor cells from a primary tumor. Thus, isolation and identification of cells that have detached from the primary tumor and circulating in the bloodstream (circulating tumor cells, CTCs) is considered to be a potential alternation to detect, characterize, and monitor cancer. Current methods for isolating CTCs are limited to complex analytic approaches that generate very low yield and purity. Here, we propose a high throughput 3D structured microfluidic chip integrated with surface plasmon resonance (SPR) sensor to isolate and identify CTCs from peripheral whole blood sample. The microfluidic velocity-field within the channel of the chip is mediated by an array of microposts protruding from upper surface of the channel. The height of microposts is shorter than that of the channel, forming a gap between the microposts and the lower surface of the channel. The lower surface of the channel also acts as the SPR sensor which can be used to identify isolated CTCs. Microfluidic velocity-field under different parameters of the arrayed microposts is studied through numerical simulation based on finite element method. Measurement on one of such fabricated microchips is conducted by our established optical Doppler tomography technique benefiting from its noninvasive, noncontact, and high-resolution spatialresolved capabilities. Both simulation and measurement of the microfluidic velocity-field within the structured channel demonstrates that it is feasible to introduce fluidic mixing and causes perpendicular flow component to the lower surface of the channel by the 3D structured microposts. Such mixing and approaching capabilities are especially desirable for isolation and identification of CTCs at the coated SPR sensor.
Circulating tumor cells (CTCs) optical Doppler tomography (ODT) microfluidic chip 
Journal of Innovative Optical Health Sciences
2010, 3(1): 25–30

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!