激光与光电子学进展, 2009, 46 (4): 28, 网络出版: 2009-04-27   

浑浊介质光学特性的激光散斑表征

Optical Properties Characterization of Turbid Media Using Laser Speckle Method
作者单位
1 河南科技大学 理学院, 河南 洛阳 471003
2 河南科技大学 化工与制药学院, 河南 洛阳 471003
摘要
大气、海水及生物组织等都属于浑浊介质,浑浊介质的光学特性表征是近年来的研究热点。从浑浊介质光散射特性的散斑表征、散斑偏振技术的应用及在医学生物学中的应用三个方面综述了浑浊介质光学特性的激光散斑表征方法及其进展。
Abstract
The atmosphere, sea water and biology tissues belong to turbid media, whose optical properties characterization are research focus spots these years. The latest research development of turbid media in optical properties characterization using laser speckle approaches was proposed in three aspects, including the speckle characterization of the optical scattering properties in turbid media, applications of laser speckle polarization techniques and applications in biomedical sciences.
参考文献

[1] . L. Swanson, B.D. Billard, T.L. Gennaro. Limits of optical transmission measurements with application to particle sizing techniques[J]. Appl. Opt., 1999, 38: 5887-5893.

[2] H.C. Van de Hulst. Light Scattering by Small Particles[M]. New York: Dover Publication, 1981

[3] . Yoon, S.A. Prahl, A.J. Welch. Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media[J]. Appl. Opt., 1989, 28(12): 2250-2255.

[4] . M. Yoo, F. Liu, R. R. Alfano. When does the diffusion approximation fail to describe photon transport in random media[J]. Phys. Rev. Lett., 1990, 64(22): 2647-2650.

[5] J. Lenoble. Atmospheric Radiative Transfer[M]. Hampton; Deepak Publication, 1993, 234~237.

[6] . L. Swanson, B.D. Billard, T.L. Gennaro. Limits of optical transmission measurements with application to particle sizing techniques[J]. Appl. Opt., 1999, 38(27): 5887-5893.

[7] . Piederrière, J. Cariou, Y. Guern et al.. Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering[J]. Opt. Exp., 2004, 12(1): 176-188.

[8] . Piederriere, J. Le Meur, J. Cariou et al.. Particle aggregation monitoring by speckle size measurement; application to blood platelets Aggregation[J]. Opt. Exp., 2004, 12(19): 4596-4601.

[9] . D. McKinney, M. A. Webster, K. J. Webb et al.. Characterization and imaging in optically scattering media by use of laser speckle and a variable-coherence source[J]. Opt. Exp., 2000, 25(1): 4-6.

[10] . Coherent light scattering on nanofluids: computer simulation results[J]. Appl. Opt., 2008, 47(10): 1434-1442.

[11] . . Investigation on utilizing laser speckle velocimetry to measure the velocities of nanoparticles in nanofluids[J]. Opt. Exp., 2006, 14(17): 7559-7566.

[12] . Guyot, M. C. Péron, E. Deléchelle. Spatial speckle characterization by brownian motion analysis[J]. Phys. Rev. E, 2004, 70: 046618.

[13] . Carvalho, B. Clairac, M. Benderitter et al.. Statistical speckle study to characterize scattering media: use of two complementary approaches[J]. Opt. Exp., 2007, 15(21): 13817-13831.

[14] . Measuring mixing dynamics of transparent fluids with electronic speckle pattern interferometry[J]. Appl. Opt., 1997, 36(25): 6171-6178.

[15] . M. Vellekoop, A.P. Mosk. Focusing coherent light through opaque strongly scattering media[J]. Opt. Lett., 2007, 32(16): 2309-2311.

[16] . M. Vellekoop, A.P. Mosk. Phase control algorithms for focusing light through turbid media[J]. Opt. Comm., 2008, 281: 3071-3080.

[17] V.V. Tuchin. Laser light scattering in biomedical diagnostics and therapy[J]. J. Las. Appl., 1993, 5(2~3): 43~60

[18] . Piederrière, F. Boulvert, J. Cariou et al.. Backscattered speckle size as a function of polarization: influence of particle-size and -concentration[J]. Opt. Exp., 2005, 13(13): 5030-5039.

[19] . P. Morgan, M.E. Ridgway. Polarization properties of light backscattered from a two layer scattering medium[J]. Opt. Exp., 2000, 7(12): 395-402.

[20] . Wang. Degree of polarization in laser speckles from turbid media: Implications in tissue optics[J]. J. Biomedical Opt., 2002, 7(3): 307-312.

[21] . Ghosh, H. S. Patel, P. K. Gupta. Depolarization of light in tissue phantoms -effect of a distribution in the size of scatterers[J]. Opt. Exp., 2003, 11(18): 2198-2205.

[22] . Walsh et al.. Polarization discrimination of coherently propagating light in turbid media[J]. Appl. Opt., 1999, 38(19): 4252-4261.

[23] . Walsh Jr. Duncan J. Maitband et al.. Polarized light propagation through tissue phantoms containing densely packed scatterers[J]. Opt. Lett., 2000, 25(4): 239-241.

[24] . Finding the field transfer matrix of scattering media[J]. Opt. Exp., 2008, 16(17): 13225-13232.

[25] . . Efficient characterization of regional mesenteric blood flow by use of laser speckle imaging[J]. Appl. Opt., 2003, 42(28): 5759-5764.

[26] . . Monitoring thermal-induced changes in tumor blood flow and microvessels with laser speckle contrast imaging[J]. Appl. Opt., 2007, 26(10): 1911-1917.

[27] . . Characterization of backscattering Mueller matrix patterns of highly scattering media with triple scattering assumption[J]. Opt. Exp., 2007, 15(15): 9672-9680.

[28] . Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit[J]. Opt. Exp., 2008, 16(19): 14321-14329.

[29] . . Hyperosmotic chemical agent's effect on in vivo cerebral blood flow revealed by laser speckle[J]. Appl. Opt., 2004, 43(31): 5772-5777.

[30] . Boas et al.. Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging[J]. Appl. Opt., 2005, 44(10): 1823-1830.

[31] . Zimnyakov, Alexander P. Sviridov, Liana V. Kuznetsova et al.. Monitoring of tissue thermal modification with a bundle-based full-field speckle analyzer[J]. Appl. Opt., 2006, 45(18): 4480-4490.

[32] . Parthasarathy, W. James Tom, Ashwini Gopal et al.. Robust flow measurement with multi-exposure speckle imaging[J]. Opt. Exp., 2008, 16(3): 1975-1989.

[33] . Riahi, Hamid Latifi, Mohsen Sajjadi. Speckle correlation photography for the study of water content and sap flow in plant leaves[J]. Appl. Opt., 2006, 45(29): 7674-7678.

[34] . van Leeuwen et al.. Speckle size and decorrelation time; space-time correlation analysis of coherent light dynamically scattered from turbid media[J]. Opt. Comm., 2008, 281(6): 1755-1760.

[35] . Quasi-confocal fluorescence sectioning with dynamic speckle illumination[J]. Opt. Lett., 2005, 30(24): 3350-3352.

[36] . Dynamic speckle illumination microscopy with translated versus randomized speckle patterns[J]. Opt. Exp., 2006, 14(16): 7198-7209.

[37] . Dynamic speckle illumination microscopy with wavelet prefiltering[J]. Opt. Lett., 2007, 32(11): 1417-1419.

李新忠, 台玉萍, 甄志强, 陈庆东, 李立本. 浑浊介质光学特性的激光散斑表征[J]. 激光与光电子学进展, 2009, 46(4): 28. Li Xinzhong, Tai Yuping, Zhen Zhiqiang, Chen Qingdong, Li Liben. Optical Properties Characterization of Turbid Media Using Laser Speckle Method[J]. Laser & Optoelectronics Progress, 2009, 46(4): 28.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!