Photonic Sensors, 2015, 5 (2): 159–165, Published Online: Apr. 20, 2015   

Design of a Surface Plasmon Resonance Sensor Based on Grating Connection

Author Affiliations
1 College of Electronic Engineering, Guangxi Normal University, Guilin, 541004, China
2 College of Mathematics and Statistics, Guangxi Normal University,Guilin, 541004, China
Abstract
Nowdays, the study of measurement of the biological field focuses on the research of improving surface plasmon resonance (SPR) in the fields of integration and detection sensitivity. We designed a kind of grating connected surface plasmon resonance sensor. Theoretically, we analyzed the wave vector and the effective refractive index relations with the diffraction grating structure. Then we obtained the nanoparticles enhancement SPR structure with a resolution 10 times higher than that of traditional SPR sensors. Also, we used the finite-difference time-domain (FDTD) analysis and simulation which showed that it was obvious with coupling effect by the nanoparticles enhancement SPR structure that the reflectance spectral bandwidth results validated the structure significantly which improved the sensitivity. Experimental results showed that the dynamic response of the designed sensor reached 10–6 RIU (refractive index unit). This study has the certain significance to long-distance and special sensing applications.
References

[1] P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Physical Review B, 2000, 611(15): 10484–10503.

[2] T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Applied Physics Letters, 2004, 85(18): 3968–3970.

[3] G. Winter, S. Wedge, and W. L. Barnes, “Can lasing at visible wavelength be achieved using the low-loss long-range surface plasmon-polariton mode ” New Journal of Physics, 2006, 8(125): 1–14.

[4] M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Gain assisted surface plasmon polariton in quantum well structures,” Optics Express, 2007, 15(1): 176–182.

[5] M. Ambati, D. A. Genov, R. F. Oulton, and X. Zhang, “Active plasmonics: surface plasmon interaction with optical emitters,” IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(6): 1395–1403.

[6] A. Kovyakov, A. R. Zakharian, K. M. Gundu, and S. A. Darmanyan, “Giant optical resonances due to gain-assisted Bloch surface plasmon,” Applied Physics Letters, 2009, 94(15): 151111-1–151111-3.

[7] P. Berini, “Long-range surface plasmon polaritons,” Advances in Optics and Photonics, 2009, 1(3): 484–588.

[8] I. D. Leon and P. Berini, “Modeling surface plasmon- polariton gain in planar metallic structures,” Optics Express, 2009, 17(22): 20191–20202.

[9] I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nature Photonics, 2010, 4(6): 382–387.

[10] M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nature Photonics, 2010, 4(7): 457–461.

[11] F. H’Dhili, T. Okamoto, J. Simonen, and S. Kawata, “Improving the emission efficiency of periodic plasmonic structures for lasing applications,” Optics Communications, 2011, 284(2): 561–566.

[12] Y. Chen and L. Guo, “High Q long-range surface plasmon polariton modes in sub-wavelength metallic microdisk cavity,” Plasmonics, 2011, 6(1): 183–188.

[13] I. D. Leon and P. Berini, “Spontaneous emission in long-range surface plasmonpolariton amplifiers,” Physical Review B, 2011, 83(8): 081414(R).

[14] I. D. Leon and P. Berini, “Measuring gain and noise in active long-range surface plasmon-polariton waveguides,” Review of Scientific Instruments, 2011, 82(3): 033107.

[15] R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Makinen, et al., “A room-temperature semiconductor spaser operating near 1.5 μm,” Optics Express, 2011, 19(9): 8954–8961.

[16] D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, et al., “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Applied Physics Letters, 2005, 87(26): 261114.

[17] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Physical Review B, 2006, 73(3): 035407.

[18] S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Optics Communications, 2006, 258(2): 295–299.

[19] Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Gain-induced switching in metal-dielectric-metal plasmonic waveguides,” Applied Physics Letters, 2008, 92(4): 041117-1–041117-3.

Jun ZHU, Liuli QIN, Shuxiang SONG, Junwen ZHONG, Siyuan LIN. Design of a Surface Plasmon Resonance Sensor Based on Grating Connection[J]. Photonic Sensors, 2015, 5(2): 159–165.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!