光子学报, 2016, 45 (2): 0216001, 网络出版: 2016-04-01   

CoSb3纳米薄膜的制备与热电性能

Fabrication and Thermoelectric Performance of CoSb3 Nanoparticle Films
作者单位
常州大学 数理学院, 江苏 常州 213164
摘要
通过对低压化学气相沉积制得的CoSb3纳米薄膜在300~800K温度范围内的热电性能测试,发现其电阻率较其他单晶CoSb3块状样品低一个量级,热导率值在1.08~4.05 Wm-1K-1之间,比单晶CoSb3低得多.这表明纳米结构导致热导率显著降低,最高热电优值在773K出现且为0.114.这种纳米薄膜材料在研制新型高效热电半导体方面极具应用前景.
Abstract
The thermoelectric properties of the CoSb3 nanoparticle films, which have been prepared via the Low Pressure Chemical Vapor Deposition, were measured in the temperature range from 300 to 800 K. The resistivity of the CoSb3nanoparticle films is one order of magnitude lower than the single crystal CoSb3bulk sample. The measured values of the thermal conductivity of the CoSb3 nanoparticle films are in the range from 1.08 to 4.05 Wm-1K-1, which are much lower than that of the single crystal CoSb3 samples. This suggests that the nanostructure results in a significant reduction of the thermal conductivity. The highest thermoeletric optimal value was 0.114 and obtained at 773 K. The discussed nanoparticle films are promising for realizing new types of highly efficient thermoelectric semiconductors.
参考文献

[1] SCHEELE M, OESCHLER N, MEIER K, et al. Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles[J]. Advanced Functional Materials, 2009, 19(21):34763483.

[2] DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for lowdimensional thermoelectric materials[J]. Advanced Materials, 2007, 19(8):10431053.

[3] ROWE D M. Thermoelectrics handbook: macro to nano[M]. CRC/Taylor & Francis, 2006.

[4] NOLAS G S, MORELLI D T, TRITT T M. A phononglasselectron crystal approach to advanced thermoelectric energy conversion applications[J]. Annual Review of Materials Research, 1999, 29(1):89 116.

[5] KITUN A, BALANDIN A, LIU J L, et al. Inplane lattice thermal conductivity of a quantumdot superlattice[J]. Journal of Applied Physics, 2002, 88(2):696699.

[6] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2):105114.

[7] BAI S Q, PEI Y Z, CHEN L D, et al. Enhanced thermoelectric performance of dualelementfilled skutterudites BaxCeyCo4Sb12[J]. Acta Materialia, 2009,57(11):31353139.

[8] ZHANG J J, XU B, YU F R, et al. Thermoelectric properties of ntype CoSb3 fabricated with high pressure sintering[J]. Journal of Alloys and Compounds,2010, 503(2):490493.

[9] ZHANG L, MELNYCHENKOKOBLYUK N, ROYANIAN E, et al. Influence of filler element and Nisubstitution on thermoelectric properties of multifilled skutterudites[J]. Journal of Alloys and Compounds, 2010, 504(1):5359.

[10] XIONG Z, CHEN X H, HUANG X Y, et al. High thermoelectric performance of Yb0.26Co4Sb12/y GaSb nanocomposites originating from scattering electrons of low energy[J]. Acta Materialia, 2010, 58(11):39954002.

[11] CHU Y, TANG X F, ZHAO W Y, et al. Synthesis and growth of Rodlike and spherical nanostructures CoSb3 via ethanol SolGel method[J]. Crystal. Growth Design,2008, 8(1):208210.

[12] CAILLAT T, BORSHCHEYSKY A, FLEURIAL J P. Properties of single crystalline semiconducting CoSb3[J]. Journal of .Applied Physics, 1996, 80(8):44424449.

[13] SMALLEY A L E, KIM S, JOHNSON D C. Effects of Composition and Annealing on the Electrical Properties of CoSb3[J]. Chemistry of Materials,2003, 15(20):38473851.

[14] LIU W S, ZHANG B P, LI J F, et al. Enhanced thermoelectric properties in CoSb3xTex alloys prepared by mechanical alloying and spark plasma sintering[J]. Journal of Applied Physics, 2007, 102(10):103717.

[15] YANG L, HNG H H, CHENG H, et al. Synthesis of CoSb3 by a modified polyol process[J].Materials Letters,2008,62:24832485.

[16] YANG L, HNG H H, LI D, et al. Thermoelectric properties of ptype CoSb3 nanocomposites with dispersed CoSb3 nanoparticles [J]. Journal of Applied Physics, 2009, 106(1):013705.

[17] CHEN L J, HU H N, LI Y X, et al. Ordered cosb3 nanowire arrays synthesized by electrodeposition[J]. Chemistry Letters,2006, 35(2):170171..

[18] MI J L, ZHAO X B, ZHU T J, et al. Improved thermoelectric figure of merit in ntype CoSb3 based nanocomposites[J]. Applied Physics Letters, 2007, 91(17):1721161721163.

[19] TOPRAK M S, STIEWE C, PLATZEK D, et al. The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3[J]. Advanced Functional Materials, 2004, 14(12):11891196 .

[20] KAWAHARADA Y, KUROSAKI K, UNO M, et al. Thermoelectric properties of CoSb3[J]. Journal of Alloys and Compounds, 2001, 315(12):193197.

[21] GLEITER H. Nanostructured materials: Basic concepts and microstructure[J]. Acta Materialia, 2000, 48(1):129.

[22] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2):105114.

[23] ZHAO D G, GENG H R, TENG X Y. Fabrication and reliability evaluation of CoSb3/WCu thermoelectric element[J]. Journal of Alloys and Compounds, 2012, 517(7):198203.

李磊, 刘宪云, 钱忠建, 江兴方. CoSb3纳米薄膜的制备与热电性能[J]. 光子学报, 2016, 45(2): 0216001. LI Lei, LIU Xianyun, QIAN Zhongjian, JIANG Xingfang. Fabrication and Thermoelectric Performance of CoSb3 Nanoparticle Films[J]. ACTA PHOTONICA SINICA, 2016, 45(2): 0216001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!