红外与激光工程, 2017, 46 (8): 0804005, 网络出版: 2017-11-07  

临近空间全球温度场三维变分同化

Preliminary study on 3-dimensional variational assimilation of global temperature field in near space
作者单位
1 中国科学院国家空间科学中心, 北京 100190
2 中国科学院大学, 北京 100049
摘要
以TIMED\SABER红外温度探测数据为观测值, WACCM模式预报场为温度背景值, 采用三维变分同化方法, 获取了20~100 km临近空间范围的全球大气温度场, 三维变分同化后, 临近空间全球温度场的分布发生了明显的变化, 经验证算法可行。利用统计学方法对同化结果进行评估, 结果显示, 三维变分同化后临近空间全球温度场误差整体减小, 三维变分同化前的温度背景场误差最大可达17 K, 三维变分同化后的温度分析场最大误差减小至7 K以内, 同化效果明显。该算法可用于为临近空间大气环境预报模式提供更精确的初值场。
Abstract
The near space global atmospheric temperature field from 20-100 km was achieved using 3-dimensional variational (3DVAR) assimilation method, of which the observation data was taken from TIMED\SABER temperature data and the background data was taken from WACCM model. Obvious variations could be seen in the near space global atmospheric temperature field after 3DVAR assimilation. An evaluation analysis based on statistical method was accomplished. The results indicate that the errors of the near space global atmospheric temperature field get a general decrease after 3DVAR assimilation, with the maximum error decreasing from 17 K to 7 K. The application of this 3DVAR assimilation algorithm can provide more accurate initial fields to near space atmospheric environment forecast model.
参考文献

[1] Bouttier F, Courtier P. Data Assimilation Concepts and Methods March 1999[M]. UK: Ecmwf Org, 2002.

[2] Ma Jianwen, Qin Sixian. Recent advance and development of data assimilation algorithms[J]. Advances in Earth Science, 2012, 27(7): 747-757. (in Chinese)

[3] Dong Peiming, Xue Jishan, Huang Bing, et al. Application status and development of satellite data assimilation in numerical weather forecast[J]. Meteorological Science and Technology, 2008, 36(1): 1-7. (in Chinese)

[4] Lv Daren, Chen Zeyu, Guo Xia, et al. Recent progress in near space atmospheric environment study[J]. Advances in Mechanics, 2009, 39(6): 674-682. (in Chinese)

[5] Xu Rong, Men Tao, Zhang Rongzhi. Application of near space platform based photoelectric detecting system to space situation awareness[J]. Chinese Optics, 2010, 3(6): 546-553. (in Chinese)

[6] Chen Fenggui, Chen Guangming, Liu Kehua. Analysis of near space environment and its effect[J]. Equipment Environmental Engineering, 2013(4): 71-75. (in Chinese)

[7] Zhang Jingxu. Progress in foreign ground-based optoelectronic detecting system for space target detection[J]. Chinese Optics, 2009, 2(1): 10-16. (in Chinese)

[8] Yan Z, Hu X, Guo W, et al. Development of a mobile Doppler lidar system for wind and temperature measurements at 30-70 km[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2016, 188: 52-59.

[9] Cheng Yongqiang, Hu Xiong, Xu Li, et al. Advances of Na Lidar in near space detection[J]. Infrared and Laser Engineering, 2008, 37(S3): 28-31. (in Chinese)

[10] Fan Zhiqiang, Sheng Zheng, Wan Li, et al. Comprehensive assessment of the accuracy of the data from near space meteorological rocket sounding[J]. Acta Physics Sinica, 2013, 62(19): 199601. (in Chinese)

[11] Ma Chao, Liao He, Zhou Wenlong, et al. Discussion on retrieval of satellite atmosphere remote sensing by spaceborne lidar[J]. Infrared and Laser Engineering, 2014, 43(S1): 13-17. (in Chinese)

[12] Wang Zhongyi, Jiang Gengming. Inversion of IRAS/FY-3B atmosphere temperature and humidity profiles based on fast locally linear regression[J]. Optics and Precision Engineering, 2016, 24(6): 1529-1539. (in Chinese)

[13] Cheng Dongshen, Shen Tongli, Ma Gelan, et al. Advances in the meteorological data assimilation[J]. Journal of Nanjing Institute of Meteorology, 2004, 27(4): 550-564. (in Chinese)

[14] Guan Yuanhong, Zhou Guangqing, Lu Weisong, et al. Theory development and application of data assimilation methods[J]. Meteorology and Disaster Reduction Research, 2007, 30(4): 1-8. (in Chinese)

[15] Engeln A V, Nedoluha G, Kirchengast G, et al. One-dimensional variational (1-D Var) retrieval of temperature, water vapor, and a reference pressure from radio occultation measurements: A sensitivity analysis[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D11): 4337-4349.

[16] Zhang H, Chou J, Qiu C. Assimilation analysis of rammasun typhoon structure over northwest pacific using satellite data[J]. Chinese Science Bulletin, 2004, 49(4): 389-395.

[17] Hoppel K W, Baker N L, Coy L, et al. Assimilation of stratospheric and mesospheric temperatures from MLS and SABER into a global NWP model[J]. Atmospheric Chemistry & Physics, 2008, 8(20): 6103-6116.

[18] Remsberg E E, Marshall B T, Garcia-Comas M, et al. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D17): 1641-1653.

[19] Richter J H, Sassi F, Garcia R R, et al. Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3(WACCM3)[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D8): 693-695.

[20] Yang J F, Xiao C Y, Hu X, et al. Responses of zonal wind at -40°N to stratosphere sudden warming events in the stratosphere, mesosphere and lower thermosphere[J]. Sci China Tech Sci, 2017, 60(6): 935-945.

谢衍新, 吴小成, 胡雄, 杨钧烽, 肖存英. 临近空间全球温度场三维变分同化[J]. 红外与激光工程, 2017, 46(8): 0804005. Xie Yanxin, Wu Xiaocheng, Hu Xiong, Yang Junfeng, Xiao Cunying. Preliminary study on 3-dimensional variational assimilation of global temperature field in near space[J]. Infrared and Laser Engineering, 2017, 46(8): 0804005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!