中国激光, 2015, 42 (12): 1208005, 网络出版: 2015-11-30   

多级高精度可调谐的瞬时频率测量方法

Instantaneous Frequency Measurement Using Multi-Step Approach with High Resolution and Tunable Range
作者单位
北京交通大学光波技术研究所, 北京 100044
摘要
提出一种多级高精度可调谐的瞬时频率测量(IFM)方法,采用单光源无滤波的IFM 系统结构,结合光偏振调制和偏振分束原理,利用偏振调制器和偏振控制器等器件来实现对同一波长下不同光偏振维度上微波信号的加载和分离。通过控制单模光纤的色散参数,可以获得较大的测量范围,利用色散所致的射频功率衰落效应,能获得单调变化的频率—幅度映射关系,进一步通过光电探测的射频信号输出功率比来得到幅度比较函数fACF。由于fACF 可以通过改变偏振角或直流偏置电压进行调节,因此该测量方法可用于多级频率测量实现对特定频率的高精度检测。结果表明,可以获得2~17.3 GHz的测量范围和±0.15 GHz的测量精度。
Abstract
A multi-step approach for instantaneous frequency measurement (IFM) with high resolution and tunable range is proposed. A single laser source and filter-less architecture are employed too. The principle of optical polarization modulation and polarization beam splitter are combined long with a polarization modulator and polarization controllers to implement the process of loading and separating the microwave signal with identical wavelength but different polarization dimensions. By controlling the dispersion parameter of single mode fiber, a wide measurement range is achieved. Taking advantage of the dispersion- induced power fading effect, a monotonically decreasing fACF can be obtained by calculating the ratio of the microwave power via the photodiodes. Besides, by adjusting polarization angle or bias voltage, this approach can be applied to multi- step frequency measurement, thus it will lead to high measurement resolution for specific frequency. A frequency measurement range of 2~17.3 GHz with a measurement resolution of ±0.15 GHz is obtained.
参考文献

[1] Feng Guanghua, Huang Zhongwei, Wang Fang. Research on interference tactics of hopping radio under complex electromagnetic environment[J]. Communication Countermeasures, 2011, (4): 44-47. 凤光华, 黄忠卫, 王芳. 复杂电磁环境下跳频电台抗干扰战法研究[J]. 通信对抗, 2011, (4): 44-47.

[2] 朱海玲, 潘炜, 陈吉欣, 等. 基于单通带微波光子滤波的多倍频微波信号产生[J]. 中国激光, 2013, 40(1): 0105003.

    Zhu Hailing, Pan Wei, Chen Jixin, et al.. Frequency multiplied microwave signal generation based on single passband microwave photonic filtering[J]. Chinese J Lasers, 2013, 40(1): 0105003.

[3] 张丽丽, 童峥嵘, 曹晔, 等. 基于多波长光纤激光器和色散器件级联的微波光子带通滤波器[J]. 中国激光, 2014, 41(2): 0205004.

    Zhang Lili, Tong Zhengrong, Cao Ye, et al.. Microwave photonic bandpass filter based on multi-wavelength fiber lasers and cascaded dispersion devices[J]. Chinese J Lasers, 2014, 41(2): 0205004.

[4] NGUYEN L V T. Microwave photonic technique for frequency measurement of simultaneous signals[J]. IEEE Photon Technol Lett, 2009, 21(10): 642-644.

[5] Zhang X M, Chi H, Zhang X M, et al.. Instantaneous microwave frequency measurement using an optical phase modulator[J]. IEEE Microwave and Wireless Components Letters, 2009, 19(6): 422-424.

[6] Attygalle M, Hunter D B. Improved photonic technique for broadband radio-frequency measurement[J]. IEEE Photon Technol Lett, 2009, 21(4): 206-208.

[7] Zou X, Pan S L, Yao J. Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation[J]. J Lightwave Technol, 2009, 27(23): 5314-5320.

[8] Wang D P, Xu K, Dai J, et al.. Photonic-assisted approach for instantaneous microwave frequency measurement with tunable range by using Mach-Zehnder interferometers[J]. Chin Opt Lett, 2013, 11(2): 020604.

[9] Zou X, Yao J. An optical approach to microwave frequency measurement with adjustable measurement range and resolution[J]. IEEE Photon Technol Lett, 2008, 20(23): 1989-1991.

[10] Li J, Fu S, Xu K, et al.. Photonic-assisted microwave frequency measurement with higher resolution and tunablerange[J]. Opt Lett, 2009, 34(6): 743-745.

[11] Li W, Zhu N H, Wang L X. Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution[J]. Opt Lett, 2012, 37(2): 166-168.

[12] Li W, Zhu N H, Wang L X. Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach-Zehnder modulator [J]. Photon J IEEE, 2012, 4(2): 427-436.

[13] Zhang H L, Pan S L. Instantaneous frequency measurement with adjustable measurement range and resolution based on polarization modulator[J]. Electron Lett, 2013, 49(4): 277-279.

[14] 张华林. 双偏振调制大范围高分辨率瞬时微波频率测量[J]. 中国激光, 2014, 41(11): 1108004.

    Zhang Hualin. Instantaneous microwave frequency measurement with wide range and high resolution based on dual polarization modulation [J]. Chinese J Lasers, 2014,41(11): 1108004.

[15] Li J, Ning T G, Pei L, et al.. Performance analysis on an instantaneous microwave frequency measurement with tunable range and resolution based on a single laser source[J]. Opt & Laser Technol, 2014, 63: 54-61.

[16] Li Y Q, PEI L, Li J, et al.. Instantaneous microwave frequency measurement with improved resolution[J]. Opt Commun, 2015, 354: 140- 147.

李月琴, 裴丽, 李晶, 王一群, 袁瑾. 多级高精度可调谐的瞬时频率测量方法[J]. 中国激光, 2015, 42(12): 1208005. Li Yueqin, Pei Li, Li Jing, Wang Yiqun, Yuan Jin. Instantaneous Frequency Measurement Using Multi-Step Approach with High Resolution and Tunable Range[J]. Chinese Journal of Lasers, 2015, 42(12): 1208005.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!