Chinese Optics Letters, 2021, 19 (9): 092501, Published Online: Jul. 8, 2021   

Avalanche mechanism analysis of 4H-SiC n-i-p and p-i-n avalanche photodiodes working in Geiger mode

Author Affiliations
1 School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
2 School of Electronic and Information Engineering, Nanjing University of Information Science & Technology Binjiang College, Wuxi 214105, China
Copy Citation Text

Linlin Su, Weizong Xu, Dong Zhou, Fangfang Ren, Dunjun Chen, Rong Zhang, Youdou Zheng, Hai Lu. Avalanche mechanism analysis of 4H-SiC n-i-p and p-i-n avalanche photodiodes working in Geiger mode[J]. Chinese Optics Letters, 2021, 19(9): 092501.

References

[1] H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi, X. Fang. New concept ultraviolet photodetectors. Mater. Today, 2015, 18: 493.

[2] Y. Wang, Y. Qian, X. Kong. Photon counting based on solar-blind ultraviolet intensified complementary metal-oxide-semiconductor (ICMOS) for corona detection. IEEE Photon. J., 2018, 10: 7000919.

[3] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photon., 2009, 3: 696.

[4] X. Yi, S. Xie, B. Liang, L. W. Lim, J. S. Cheong, M. C. Debnath, D. L. Huffaker, C. H. Tan, J. P. R. David. Extremely low excess noise and high sensitivity AlAs0.56Sb0.44 avalanche photodiodes. Nat. Photon., 2019, 13: 683.

[5] J. C. Campbell. Recent advances in avalanche photodiodes. J. Lightwave Technol., 2016, 34: 278.

[6] C. J. Chunnilall, I. P. Degiovanni, S. Kueck, I. Müller, A. G. Sinclair. Metrology of single-photon sources and detectors: a review. Opt. Eng., 2014, 53: 1910.

[7] A. Vert, S. Soloviev, P. Sandvik. SiC avalanche photodiodes and photomultipliers for ultraviolet and solar-blind light detection. Phys. Status Solidi A, 2009, 206: 2468.

[8] A. R. Powell, L. B. Rowland. SiC materials-progress, status, and potential roadblocks. Proc. IEEE, 2002, 90: 942.

[9] X. Bai, H. Liu, D. C. Mcintosh, J. C. Campbell. High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes. IEEE J. Quantum Electron., 2009, 45: 300.

[10] D. Zhou, F. Liu, H. Lu, D. Chen, F. Ren, R. Zhang, Y. Zheng. High-temperature single photon detection performance of 4H-SiC avalanche photodiodes. IEEE Photon. Technol. Lett, 2014, 26: 1136.

[11] X. Guo, A. L. Beck, Z. Huang, N. Duan, J. C. Campbell, D. Emerson, J. J. Sumakeris. Performance of low-dark-current 4H-SiC avalanche photodiodes with thin multiplication layer. IEEE Trans. Electron Devices, 2006, 53: 2259.

[12] J. Hu, X. Xin, X. Li, J. H. Zhao, B. L. VanMil, K. K. Lew, R. L. Myers-Ward, C. R. Eddy, D. K. Gaskill. 4H-SiC visible-blind single-photon avalanche diode for ultraviolet detection at 280 and 350 nm. IEEE Trans. Electron Devices, 2008, 55: 1977.

[13] X. Y. Zhou, J. Li, W. L. Lu, Y. Wang, X. Song, S. Yin, X. Tan, Y. Lü, H. Guo, G. Gu, Z. Feng. Large-area 4H-SiC avalanche photodiodes with high gain and low dark current for visible-blind ultraviolet detection. Chin. Opt. Lett., 2018, 16: 060401.

[14] X. Y. Zhou, X. Tan, Y. Wang, X. Song, T. Han, J. Li, W. Lu, G. Gu, S. Liang, Y. Lü, Z. Feng. High-performance 4H-SiC p-i-n ultraviolet avalanche photodiodes with large active area. Chin. Opt. Lett., 2019, 17: 090401.

[15] A. L. Beck, B. Yang, X. Guo, J. C. Campbell. Edge breakdown in 4H-SiC avalanche photodiodes. IEEE J. Quantum Electron., 2004, 40: 321.

[16] X. Guo, A. L. Beck, J. C. Campbell, D. Emerson, J. Sumakeris. Spatial nonuniformity of 4H-SiC avalanche photodiodes at high gain. IEEE J. Quantum Electron., 2005, 41: 1213.

[17] X. Cai, L. Li, H. Lu, D. Zhou, W. Xu, D. Chen, F. Ren, R. Zhang, Y. Zheng, G. Li. Vertical 4H-SiC n-i-p-n APDs with partial trench isolation. IEEE Photon. Technol. Lett, 2018, 30: 805.

[18] S. Yang, D. Zhou, X. Cai, W. Xu, H. Lu, D. Chen, F. Ren, R. Zhang, Y. Zheng, R. Wang. Analysis of dark count mechanisms of 4H-SiC ultraviolet avalanche photodiodes working in Geiger mode. IEEE Trans. Electron Devices, 2017, 64: 4532.

[19] H. Y. Cha, P. M. Sandvik. Electrical and optical modeling of 4H-SiC avalanche photodiodes. Jpn. J. Appl. Phys., 2008, 47: 5423.

[20] T. Hatakeyama, T. Watanabe, T. Shinohe, K. Kojima, K. Arai, N. Sano. Impact ionization coefficients of 4H silicon carbide. Appl. Phys. Lett., 2004, 85: 1380.

[21] J. E. Green, W. S. Loh, A. R. J. Marshall, R. C. Tozer, J. P. R. David, S. I. Soloviev, P. M. Sandvik. Impact ionization coefficients in 4H-SiC by ultralow excess noise measurement. IEEE Trans. Electron Devices, 2012, 59: 1030.

[22] M. Hjelm, H. Nilsson, A. Martinez, K. F. Brennan, E. Bellotti. Monte Carlo study of high-field carrier transport in 4H-SiC including band-to-band tunneling. J. Appl. Phys., 2003, 93: 1099.

[23] H. Niwa. Impact ionization coefficients in 4H-SiC toward ultrahigh-voltage power devices. IEEE Trans. Electron Devices, 2015, 62: 3326.

Linlin Su, Weizong Xu, Dong Zhou, Fangfang Ren, Dunjun Chen, Rong Zhang, Youdou Zheng, Hai Lu. Avalanche mechanism analysis of 4H-SiC n-i-p and p-i-n avalanche photodiodes working in Geiger mode[J]. Chinese Optics Letters, 2021, 19(9): 092501.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!