强激光与粒子束, 2010, 22 (12): 2897, 网络出版: 2011-01-05  

孔径梯度变化的聚苯乙烯多孔薄膜的制备

Fabrication of polystyrene porous films with gradient pore structures
作者单位
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
摘要
为了对聚合物多孔材料的微观孔结构进行控制, 利用垂直沉积技术, 制备了蛋白石结构和多层异质结构的SiO2胶体晶体, 并通过模板导向前驱物填充手段, 获得了反蛋白石结构和孔径梯度变化的聚苯乙烯多孔薄膜。扫描电镜分析表明, 聚苯乙烯多孔结构精确复制了原始模板的反结构。光学透射谱显示, 填充聚苯乙烯后复合蛋白石光子禁带位置相对原始模板发生红移, 除去模板后, 光子禁带位置发生蓝移。根据布拉格衍射方程, 计算出胶体晶体模板空隙的填充分数。
Abstract
Silica opals and multilayer heterostructures were fabricated by vertical deposition technique. Polystyrene inverse opals and gradient porous structures were obtained by colloidal templating, in order to control the pore microstructure of polymer porous materials. As shown in the scanning electron microscopy images, the polystyrene porous structures are precise replicas of inverse structures of the original templates. After being infiltrated with the polystyrene, the photonic stop-band position of the opal composite is redshifted compared with the original template, and it is blueshifted after the opal template being removed. The filling ratio of polystyrene was calculated according to the Bragg formula.
参考文献

[1] 张林, 罗炫, 杜凯. ICF靶低密度聚合物多孔材料研究进展[J]. 材料导报, 2002, 16(6): 48-51. (Zhang Lin, Luo Xuan, Du Kai. Progress in research on low-density porous polymer for ICF targets. Materials Review, 2002, 16(6): 48-51)

[2] Kim K, Mok L, Erlenborn M J. Noncontact thermal gradient method for fabrication of uniform cryogenic inertial fusion target[J]. J Vac Sci Technol A, 1985, 3(3):1196-1200.

[3] Takagi M, Ishihara M, Norimatsu T, et al. Development of foam shell with plastic ablator for cryogenic laser fusion target[J].J Vac Sci Technol A, 1993, 11(5): 2837-2845.

[4] Stein A, Li F, Denny N R. Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles[J]. Chem Mater, 2008, 20(3): 649-666.

[5] Denny N R, Han S, Turgeon R T, et al. Synthetic approaches toward tungsten photonic crystals for thermal emission[J]. SPIE Proc, 2005, 6005: 501-513.

[6] Wang J, Li Q, Knoll W, et al. Preparation of multilayered trimodal colloid crystals and binary inverse opals[J]. J Am Chem Soc, 2006, 128(49): 15606-15607.

[7] Baumann T F, Satcher J H. Template-directed synthesis of periodic macroporous organic and carbon aerogels[J]. J Non-Cryst Solids, 2004, 350:120-125.

[8] Baumann T F, Satcher J H. Homogeneous incorporation of metal nanoparticles into ordered macroporous carbons[J]. Chem Mater, 2003, 15(20): 3745-3747.

[9] Nishimura S, Abrams N, Lewis B A, et al. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals[J]. J Am Chem Soc, 2003, 125(20):6306-6310.

[10] Bogush G H, Tracy M A, Zukoski IV C F. Preparation of monodisperse silica particles: control of size and mass fraction[J]. J Non-Cryst Solids, 1988, 104(1): 95-106.

[11] Yamasaki T, Tsutsui T. Spontaneous emission from fluorescent molecules embeded in photonic crystal consisitng of polystyrene microspheres[J].Appl Phys Lett, 1998, 72(16): 1957-1959.

[12] Woodcock L V, Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures[J]. Nature, 1997, 385(6612): 141-143.

[13] 李明海, 马懿, 徐岭, 等. 二氧化硅人工蛋白石晶体(opal)的制备及其结构性质的研究[J]. 物理学报, 2003, 52(5): 1302-1305.(Li Minghai, Ma Yi, Xu Ling, et al. Formation and structure of artificial opal based on the colloidal silica sphere. Acta Phys Sin, 2003, 52(5): 1302-1305)

严鸿维, 张林, 李波, 尹强. 孔径梯度变化的聚苯乙烯多孔薄膜的制备[J]. 强激光与粒子束, 2010, 22(12): 2897. Yan Hongwei, Zhang Lin, Li Bo, Yin Qiang. Fabrication of polystyrene porous films with gradient pore structures[J]. High Power Laser and Particle Beams, 2010, 22(12): 2897.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!