光学学报, 2018, 38 (1): 0116003, 网络出版: 2018-08-31   

铟钕掺杂钽酸锂单晶的生长及光学性能 下载: 1192次

Growth and Optical Properties of Lithium Tantalate Single Crystals Doped with Indium and Neodymium
作者单位
南京航空航天大学理学院, 江苏 南京 211106
摘要
采用提拉法生长了双掺杂钕离子(Nd 3+)和铟离子(In 3+)的同成分LiTaO3单晶。测量了该单晶的紫外-可见光吸收光谱,分析了该晶体的缺陷结构,得到了铟离子的掺杂浓度阈值。当铟离子掺杂浓度达到该阈值时,In∶Nd∶LiTaO3晶体的抗光损伤能力显著增强。铟离子取代晶体中的反位T aLi4+,使晶体光电导增大,减弱了光折变效应。In∶Nd∶LiTaO3晶体在光波长0.808 μm处的吸收峰的半峰全宽为15 nm,吸收截面为5.26×10 -21 cm 2。采用0.808 μm半导体激光作为抽运源,钕离子在光波长1.06 μm处出现强烈的荧光带。这些研究结果表明, In∶Nd∶LiTaO3 作为多功能晶体可以应用于高功率的光子学或光电子学器件中。
Abstract
The congruent lithium tantalate (LiTaO3) single crystals doubly-doped with Nd 3+ and In 3+ ions are grown by the Czochralski method. The ultraviolet-visible absorption spectra of these single crystals are measured, the defect structures of these single crystals are analyzed, and the threshold of the doping concentration of In 3+ ion is obtained. When the doping concentration of In 3+ ion reaches this threshold, the optical damage resistance ability of In∶Nd∶LiTaO3 crystals enhances significantly. The replacement of the anti-site T aLi4+ by In 3+ ions enhances the photo-conductivity of crystals and weakens the photorefractive effect. The full width at half maximum of the absorption peak of In∶Nd∶LiTaO3 crystals at the wavelength of 0.808 μm is 15 nm, and the absorption cross-section is 5.26×10 -21 cm 2. With a 0.808 μm semiconductor laser as the pumping source, a strong luminescence band of Nd 3+ ions appears at the wavelength of 1.06 μm. These study results show that the In∶Nd∶LiTaO3 crystals can be applied in high power photonic or integrated optoelectronic devices as the multi-functional crystals.

1 引言

铁电晶体已经被广泛应用于激光频率转换器、光通信系统、光学参量振荡器和全息存储器件[1-7]中。钽酸锂(LiTaO3)晶体具有优异的电光、声光、非线性光学和压电性能,以及较高的热稳定性和机械强度[8],在集成光学中被广泛应用。此外,钽酸锂晶体可以在较宽的光谱范围内发生光波频率转换过程[9]。以掺杂稀土离子作为活性中心,钽酸锂晶体可实现腔内自频转换过程,从而产生激光。这些方法大大增强了钽酸锂单晶的多功能性[10]。稀土掺杂钕离子(Nd3+)可以用于产生1.06 μm波长的空间光通信激光,利用常见的高功率808 nm半导体激光抽运便可实现光波频率的转换[11-12]。然而,由光折变效应引起的光损伤限制了钽酸锂晶体在高功率器件中的应用[13-14]。掺杂钕离子能够使晶体发射红外光谱[15-17],通过掺杂抗光损伤离子可以显著提高钽酸锂晶体的抗光损伤能力[18-20]。其中,In3+能够以较低的阈值浓度大大提高钽酸锂晶体的抗光损伤能力[21-22]。在同成分的LiTaO3晶体中,存在着Li空位缺陷结构,为了取得电荷平衡,一部分Ta进入Li空位,形成反位T aLi4+。在抗光损伤In3+的掺杂浓度达到其阈值之前,随着In3+掺杂浓度的提高,晶体中的反位钽T aLi4+与Li空位不断减少,In3+占据Li空位。当抗光损伤In3+掺杂浓度达到其阈值浓度时,In3+完全取代反位T aLi4+,晶体中的本征缺陷T aLi4+几乎不存在,光电导大大增加,光致折射率变化极小。

本文采用提拉法生长了不同铟离子掺杂浓度的LiTaO3晶体。通过改变In3+的掺杂浓度提高In∶Nd∶LiTaO3晶体的抗光损伤能力,利用紫外-可见光吸收光谱分析了晶体的缺陷结构,研究了In3+掺杂浓度对In∶Nd∶LiTaO3晶体抗光损伤能力的影响。

2 实验过程

2.1 单晶生长工艺

钽酸锂晶体生长所用原料均为高纯(物质的体积分数为99.99%)原料。生长同成分In∶Nd∶LiTaO3晶体的主要原料是 Li2CO3和Ta2O5粉末,掺杂剂是金属氧化物固体粉末In2O3和Nd2O3。采用 Czochralski 法在常温常压下沿着竖直方向生长晶体,籽晶方向沿c轴。由于LiTaO3晶体生长所需温度较高(1600 ℃),故采用铱坩埚进行生长,单晶炉腔充入氮气防止铱氧化。同成分LiTaO3晶体中Li和Ta的物质的量比值为0.946,按此比例配制Li2CO3和Ta2O5原料,再加入0.5%(摩尔分数,全文同)的Nd2O3和各种浓度的In2O3(摩尔分数分别为0,0.5%,1.0%,1.5%),用于生长In∶Nd∶LiTaO3晶体[23]。将称取好的原料放在球磨机中球磨24 h,获得混合均匀的混合料。Li2CO3原料放置在铱坩埚中,中频感应加热至700 ℃,并保温2 h,以分解其中的CO2。随后将混合料加热至1200 ℃,并保温3 h,Li2O和Ta2O5经固相反应成为LiTaO3多晶料。最后在氮气气氛中加热至1600 ℃左右,进行晶体生长。竖直方向温度梯度在液面下为10 ℃·cm-1,液面上为 30 ℃·cm-1;坩埚内熔体的径向温度梯度约为20 ℃·cm-1。晶体生长主要包括化料、缩颈、放肩、等径生长和降温过程。生长过程中,提拉速度为0.9~1.2 mm·h-1,旋转速度为9~12 r·min-1。由于晶体生长过程是在氮气气氛中进行,将生长出来的晶体在空气中于1100 ℃退火,可有效减少晶体缺陷。图1所示为成功生长出的晶体成品。

图 1. 生长出的In∶Nd∶LiTaO3晶体

Fig. 1. Photo of grown In∶Nd∶LiTaO3 crystal

下载图片 查看所有图片

图1可以看出,所生长的晶体颜色均匀,没有明显的杂质,内部质量较高。经测量,晶体参数为:直径50 mm,高40 mm,密度7.45 g·cm-3

2.2 单晶样品处理

同成分的LiTaO3晶体具有多畴结构,当光通过铁电畴交界(畴壁)处时会发生散射,影响晶体的光学性能。因此,必须进行人工极化,在高温下通过外加直流电场迫使晶体内的自发极化取向一致,从而转变为单畴晶体。同成分In∶Nd∶LiTaO3晶体在极化前,将c面磨平,涂上银浆,置于电炉中加热到650 ℃,保温2 h,烧结得到银电极。晶体的居里温度约为610 ℃。将晶体同白金片置于电炉中,加热至720 ℃后施加强度为10 V·mm-1的极化电场,极化15 min,保持电压,以12 ℃·h-1的慢速率降温,当炉温降至600 ℃后,则以70 ℃·h-1的快速率使晶体降至室温,然后关掉直流电源。将极化后的晶体c面切片研磨抛光,置于HNO3与HF的物质的量之比为2∶1的混合溶液中煮沸2 h,冲洗干净后放在金相显微镜下观察。负畴被腐蚀速度快,正畴被腐蚀速度慢,+c轴向端没有出现明显的腐蚀坑,-c轴向端出现三角形的腐蚀坑,这表明晶体已经完全极化。

在进行各种性能测试前,需要对晶体进行定向、切割、研磨和抛光处理。晶体需要定向的晶面为相互正交的XYZ面,分别对应结晶学的(110)、(300)和(006)晶面,布拉格衍射角θ分别为17°23'、31°23'和19°35'。所有的晶体样品都沿着c轴方向被切割成Y面晶片。切割后的晶体样品在抛光前先在研磨机上研磨,研磨时使用玻璃盘。首先,在玻璃盘上用规格为10目(1700 μm)的刚玉粉对晶体进行粗研磨,而后改用规格为5目(4000 μm)的刚玉粉进行研磨。研磨后,对晶体进行抛光处理,抛光时将抛光布覆盖在铁盘上,抛光布上涂金刚石研磨膏。最后,将晶片表面抛光到光学级别进行性能测试。

2.3 光学性能测量

采用紫外-可见-近红外光谱仪测量晶体的透射和吸收光谱。采用光斑畸变法测量In∶Nd∶LiTaO3晶体的抗光损伤能力[24],测量光路如图2所示。532 nm固体激光器发出的激光经过光阑、分束镜后,由透镜聚焦在焦平面上(In∶Nd∶LiTaO3晶体处)。激光的偏振方向沿着晶体的c轴方向。照在晶体样品上的激光束光斑直径D可由透镜焦距f和光阑孔的直径d计算得到,即

D=2πd,(1)

式中λ为激光波长。由(1)式可知,聚集在样品上的激光束面积为

S=πD22=()2πd2(2)

图 2. 抗光损伤测量光路

Fig. 2. Beam path for measuring optical damage resistance

下载图片 查看所有图片

3 结果与讨论

3.1 吸收光谱与缺陷

将晶体的吸光度除以晶片厚度,即为吸收系数,吸收边标定在吸收系数8.5 cm-1处。将4个Nd3+掺杂浓度相同(摩尔分数为1.0%),In3+掺杂浓度不同(摩尔分数分别为0,1.0%,2.0%,3.0%)的LiTaO3晶体分别标定为In0∶Nd1∶LT、In1∶Nd1∶LT、In2∶Nd1∶LT和In3∶Nd1∶LT。图3所示为In∶Nd∶LiTaO3晶体的吸收系数随波长变化的关系曲线。可以看出,In∶Nd∶LiTaO3晶体的吸收边变化规律十分明显,当In3+的掺杂浓度从0上升到2.0%时,吸收边向短波长方向移动。当In3+的掺杂浓度上升到3.0%时,吸收边反而向长波长方向移动。由此推断,In∶Nd∶LiTaO3晶体中In3+掺杂浓度的阈值在2.0%~3.0%范围内。

图4所示为In∶Nd∶LiTaO3单晶的吸收光谱,其中的吸收峰是电子由基态4I9/2向不同的激发态跃迁产生的,较强的吸收峰出现在585 nm(2G7/2+4G5/2)、748 nm(4F7/2+4S3/2)、808 nm(4F5/2+2H9/2)和878 nm(4F3/2)[25]处。808 nm处的吸收峰的半峰全宽为15 nm,In∶Nd∶LiTaO3晶体非常适合作为AlGaAs半导体激光器的抽运源。吸收截面σab=α/Nc,其中钕离子浓度(单位体积内的粒子数)Nc=1.9×1020 cm-3,吸收系数α=1 cm-1。由此可知,808 nm处钕离子的吸收截面为5.26×10-21 cm2

图 3. In∶Nd∶LiTaO3晶体在吸收系数8.5 cm-1附近的吸收边

Fig. 3. Absorption edge of In∶Nd∶LiTaO3 crystals at absorption coefficient of around 8.5 cm-1

下载图片 查看所有图片

图 4. In∶Nd∶LiTaO3晶体的吸收光谱

Fig. 4. Absorption spectrum of In∶Nd∶LiTaO3 crystals

下载图片 查看所有图片

LiTaO3晶体是是具有氧八面体结构的铁电体,它的基础光学吸收边由电子从氧离子2p轨道跃迁到Nb5+的4d轨道的跃迁能量决定[26]。In∶Nd∶LiTaO3晶体的紫外吸收边与晶体的缺陷结构和掺杂离子的占位情况直接相关。在In∶Nd∶LiTaO3晶体中,当抗光损伤离子In3+的掺杂浓度低于阈值时,绝大多数的In3+会取代反位T aLi4+占据Li位,形成缺陷结构I nLi2+。由于In3+的极化能力小于T aLi4+的,O2-的极化程度降低,其电子云变形减小,电子从O2-的2p轨道跃迁到Ta5+的4d轨道所需的能量会增大,晶体的紫外吸收边发生蓝移。由图3可知,In0∶Nd1∶LT晶体、In1∶Nd1∶LT晶体和In3∶Nd1∶LT晶体的紫外吸收边分别为354,353,352 nm。当In3+的掺杂浓度达到阈值时,部分In3+会占据正常的Li位,形成L iIn2+缺陷。由于In3+的极化能力大于Li+的,这种离子取代的结果会导致O2-的极化程度升高,其电子云变形增大,电子从O2-的2p轨道跃迁到Ta5+的4d轨道所需的能量相应减小,紫外吸收边出现红移。相比于In2∶Nd1∶LT晶体的351 nm,In3∶Nd1∶LT晶体的紫外吸收边移动到352 nm,In3+掺杂浓度的阈值仍在2.0%~3.0%范围内。当In3+掺杂浓度达到阈值时,In3+完全取代反位T aLi4+,晶体中的本征缺陷T aLi4+几乎不存在,光电导大幅增加,光致折射率变化极小,因而抗光损伤能力最强。

3.2 抗光损伤能力测试

光斑畸变法是通过直接观察屏上透射光斑的形变来判定是否发生光损伤,是一种半定量的测试方法。调节激光器的输出功率,当输出功率比较小时,晶体不产生光损伤,此时透射光斑为圆形,当激光器的功率逐渐增大,晶体内部开始产生光损伤,造成光散射。此时,透射光斑会沿着晶体c轴方向伸展或拉长,发生畸变。将透射光斑产生形变的临界光功率除以入射到晶体表面的光斑面积,结果定义为晶体的抗光损伤能力R表1给出了In∶Nd∶LiTaO3晶体抗光损伤能力的实验结果,可以看出,In3∶Nd1∶LT晶体的抗光损伤能力最强。

用激光功率密度为2×104 W·cm-2的激光照射In∶Nd∶LiTaO3晶体,照射时间相同,透射光斑的形变图形如图5所示。图5(a)所示为没有晶体时的原始激光光斑。由图5(b)~(d)可以看出,光斑沿着c轴拉长,发生了明显的变形。由图5(e)可以看出,In3∶Nd1∶LT晶体没有发生光损伤现象。

表 1. In∶Nd∶LiTaO3晶体抗光损伤能力

Table 1. Optical damage resistance ability of In∶Nd∶LiTaO3 crystals

CrystalIn0∶Nd1∶LTIn1∶Nd1∶LTIn2∶Nd1∶LTIn3∶Nd1∶LT
R /(W·cm-2)1.43×1027.67×1025.09×1032.16×104

查看所有表

图 5. (a)原始激光光斑;(b) In0∶Nd1∶LT、(c) In1∶Nd1∶LT、(d) In2∶Nd1∶LT和(e) In3∶Nd1∶LT晶体的透射光斑

Fig. 5. (a) Original laser spot; transmission spots of (b) In0∶Nd1∶LT, (c) In1∶Nd1∶LT, (d) In2∶Nd1∶LT, and (e) In3∶Nd1∶LT crystals

下载图片 查看所有图片

双折射率变化量为

ΔnγkαI/σ=γkαI/(σd+σph),(3)

式中γ为广义电光系数,k为光生伏特效应的Glass常数,α为光学吸收系数,I为光照强度;σ=σd+σph为晶体总的电导率,σd为晶体暗电导率,σph为晶体光电导率[27]。在有激光照射的情况下,晶体的暗电导率远小于其光电导率,因此,分析光损伤机制时,通常忽略暗电导的影响。在同成分LiTaO3晶体中,存在着Li空位缺陷结构,为了取得电荷平衡,一部分Ta进入Li空位,形成反位T aLi4+。在抗光损伤In3+掺杂浓度达到阈值前,随着In3+掺杂浓度的提高,晶体中的反位钽T aLi4+与Li空位不断减少,晶体的光电导增大,由(3)式可知,折射率也会相应降减小[28]。当In3+掺杂浓度达到阈值时,In3+完全取代反位T aLi4+,晶体中的本征缺陷T aLi4+几乎不存在,光电导最大,光致折射率最小,因此In3∶Nd1∶LT晶体具有最强的抗光损伤能力。

3.3 光致发光特性

在0.808 μm连续激光的激发下,In∶Nd∶LiTaO3单晶中的电子由基态4I9/2 跃迁到激发态4F5/2+2H9/2,而后向低能级跃迁,产生三个发射光谱带,即0.88~0.96 μm, 1.05~1.13 μm和1.33~1.43 μm,分别对应4F3/24I9/24F3/24I11/24F3/24I13/2三个跃迁过程,如图6所示。可以看出,1.06 μm附近的发光强度最大[29]

图 6. 0.808 μm连续激光激发In∶Nd∶LiTaO3单晶荧光发射谱

Fig. 6. Fluorescence emission spectrum of In∶Nd∶LiTaO3 single crystal excited by 0.808 μm continuous laser

下载图片 查看所有图片

4 结论

采用提拉法生长了掺杂LiTaO3晶体。在同成分In∶Nd∶LiTaO3晶体(Li和Ta的物质的量比值为0.946)中加入相同浓度的Nd2O3(摩尔分数0.5%)和不同浓度的In2O3(摩尔分数分别为0,0.5%,1.0%,1.5%),通过测量晶体的紫外吸收边,确定了In3+的掺杂浓度阈值为3.0%。利用透射光斑畸变法测量了同成分In∶Nd∶LiTaO3晶体的抗光损伤能力。当In3+掺杂浓度达到阈值时,晶体的抗光损伤能力最强。这是由于In3+取代了晶体中的反位T aLi4+,晶体的光电导增大,双折射率变化量减小。具有优异的电光性能、抗光损伤能力和发光特性的In∶Nd∶LiTaO3单晶有望成为集成光子学的一种优选材料。

参考文献

[1] He C J, Deng C G, Wang J M, et al. Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3-BaTiO3 single crystals[J]. Condensed Matter, 2016, 483: 44-47.

    He C J, Deng C G, Wang J M, et al. Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3-BaTiO3 single crystals[J]. Condensed Matter, 2016, 483: 44-47.

    He C J, Deng C G, Wang J M, et al. Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3-BaTiO3 single crystals[J]. Condensed Matter, 2016, 483: 44-47.

[2] 贾红, 孙亮. 掺铁铌镁酸铅-钛酸铅单晶的光折变效应[J]. 中国科学: 物理学力学天文学, 2012, 42(4): 333-338.

    贾红, 孙亮. 掺铁铌镁酸铅-钛酸铅单晶的光折变效应[J]. 中国科学: 物理学力学天文学, 2012, 42(4): 333-338.

    贾红, 孙亮. 掺铁铌镁酸铅-钛酸铅单晶的光折变效应[J]. 中国科学: 物理学力学天文学, 2012, 42(4): 333-338.

    Jia H, Sun L. Photorefractive effect of ion-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Scientia Sinica: Physics, Mechanica and Astronomica, 2012, 42(4): 333-338.

    Jia H, Sun L. Photorefractive effect of ion-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Scientia Sinica: Physics, Mechanica and Astronomica, 2012, 42(4): 333-338.

    Jia H, Sun L. Photorefractive effect of ion-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Scientia Sinica: Physics, Mechanica and Astronomica, 2012, 42(4): 333-338.

[3] He C J, Fu X D, Xu F, et al. Orientation effects on the bandgap and dispersion behavior of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals[J]. Chinese Physics B, 2012, 21(5): 054207.

    He C J, Fu X D, Xu F, et al. Orientation effects on the bandgap and dispersion behavior of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals[J]. Chinese Physics B, 2012, 21(5): 054207.

    He C J, Fu X D, Xu F, et al. Orientation effects on the bandgap and dispersion behavior of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals[J]. Chinese Physics B, 2012, 21(5): 054207.

[4] He C J, Chen H B, Wang J M, et al. Optical transmission and dispersion of 0.25Pb(In1/2Nb1/2)O3-(0.75-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals[J]. Journal of Applied Physics, 2015, 117: 164104.

    He C J, Chen H B, Wang J M, et al. Optical transmission and dispersion of 0.25Pb(In1/2Nb1/2)O3-(0.75-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals[J]. Journal of Applied Physics, 2015, 117: 164104.

    He C J, Chen H B, Wang J M, et al. Optical transmission and dispersion of 0.25Pb(In1/2Nb1/2)O3-(0.75-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals[J]. Journal of Applied Physics, 2015, 117: 164104.

[5] He C J, Yi X J, Wu T, et al. Wavelength dependence of refractive index in lead-free Na0.5Bi0.5TiO3-BaTiO3 single crystals[J]. Optical Materials, 2014, 36(12): 2023-2025.

    He C J, Yi X J, Wu T, et al. Wavelength dependence of refractive index in lead-free Na0.5Bi0.5TiO3-BaTiO3 single crystals[J]. Optical Materials, 2014, 36(12): 2023-2025.

    He C J, Yi X J, Wu T, et al. Wavelength dependence of refractive index in lead-free Na0.5Bi0.5TiO3-BaTiO3 single crystals[J]. Optical Materials, 2014, 36(12): 2023-2025.

[6] He C J, Chen H B, Sun L, et al. Effective electro-optic coefficient of (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystals[J]. Crystal Research and Technology, 2012, 47(6): 610-614.

    He C J, Chen H B, Sun L, et al. Effective electro-optic coefficient of (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystals[J]. Crystal Research and Technology, 2012, 47(6): 610-614.

    He C J, Chen H B, Sun L, et al. Effective electro-optic coefficient of (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystals[J]. Crystal Research and Technology, 2012, 47(6): 610-614.

[7] 贾红. 三掺杂化学计量比钽酸锂晶体的非挥发光存储性能[J]. 中国科学: 技术科学, 2015, 45(5): 512-518.

    贾红. 三掺杂化学计量比钽酸锂晶体的非挥发光存储性能[J]. 中国科学: 技术科学, 2015, 45(5): 512-518.

    贾红. 三掺杂化学计量比钽酸锂晶体的非挥发光存储性能[J]. 中国科学: 技术科学, 2015, 45(5): 512-518.

    Jia H. Nonvolatile photorefractive properties of triply doped stoichiometric lithium tantalate single crystals[J]. Scientia Sinica: Technology, 2015, 45(5): 512-518.

    Jia H. Nonvolatile photorefractive properties of triply doped stoichiometric lithium tantalate single crystals[J]. Scientia Sinica: Technology, 2015, 45(5): 512-518.

    Jia H. Nonvolatile photorefractive properties of triply doped stoichiometric lithium tantalate single crystals[J]. Scientia Sinica: Technology, 2015, 45(5): 512-518.

[8] 颜涛. 高品质铌酸锂、钽酸锂晶体的生长、结构与性质研究[D]. 济南: 山东大学, 2011.

    颜涛. 高品质铌酸锂、钽酸锂晶体的生长、结构与性质研究[D]. 济南: 山东大学, 2011.

    颜涛. 高品质铌酸锂、钽酸锂晶体的生长、结构与性质研究[D]. 济南: 山东大学, 2011.

    YanT. Growth, structure and properties of high quality LiNbO3 and LiTaO3 crystals[D]. Jinan: Shandong University, 2011.

    YanT. Growth, structure and properties of high quality LiNbO3 and LiTaO3 crystals[D]. Jinan: Shandong University, 2011.

    YanT. Growth, structure and properties of high quality LiNbO3 and LiTaO3 crystals[D]. Jinan: Shandong University, 2011.

[9] Lee K S, Ko D K, Takekawa S, et al. Characterization of in-situ terahertz detection by optical interaction in a periodically poled stoichiometric lithium tantalate nonlinear crystal[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(10): 833-829.

    Lee K S, Ko D K, Takekawa S, et al. Characterization of in-situ terahertz detection by optical interaction in a periodically poled stoichiometric lithium tantalate nonlinear crystal[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(10): 833-829.

    Lee K S, Ko D K, Takekawa S, et al. Characterization of in-situ terahertz detection by optical interaction in a periodically poled stoichiometric lithium tantalate nonlinear crystal[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(10): 833-829.

[10] Zhang D L, Zhang Q, Wong W H, et al. Er 3+ diffusion in LiTaO3 crystal [J]. Applied Surface Sciences, 2015, 357: 1097-1103.

    Zhang D L, Zhang Q, Wong W H, et al. Er 3+ diffusion in LiTaO3 crystal [J]. Applied Surface Sciences, 2015, 357: 1097-1103.

    Zhang D L, Zhang Q, Wong W H, et al. Er 3+ diffusion in LiTaO3 crystal [J]. Applied Surface Sciences, 2015, 357: 1097-1103.

[11] 刘坚, 刘军, 芳苏良, 等. Gd 3+/Y 3+ 共掺对Nd∶CaF2 晶体光谱性能的影响 [J]. 物理学报, 2016, 65(5): 054207.

    刘坚, 刘军, 芳苏良, 等. Gd 3+/Y 3+ 共掺对Nd∶CaF2 晶体光谱性能的影响 [J]. 物理学报, 2016, 65(5): 054207.

    刘坚, 刘军, 芳苏良, 等. Gd 3+/Y 3+ 共掺对Nd∶CaF2 晶体光谱性能的影响 [J]. 物理学报, 2016, 65(5): 054207.

    Liu J, Liu J, Fang S L, et al. Effects of Gd 3+/Y 3+ codoping on the spectral properties of Nd∶CaF2 crystals [J]. Acta Physica Sinica, 2016, 65(5): 054207.

    Liu J, Liu J, Fang S L, et al. Effects of Gd 3+/Y 3+ codoping on the spectral properties of Nd∶CaF2 crystals [J]. Acta Physica Sinica, 2016, 65(5): 054207.

    Liu J, Liu J, Fang S L, et al. Effects of Gd 3+/Y 3+ codoping on the spectral properties of Nd∶CaF2 crystals [J]. Acta Physica Sinica, 2016, 65(5): 054207.

[12] 张园园, 王旭平, 刘冰, 等. 无序激光晶体Nd∶BaLaGa3O7的光谱研究[J]. 光学学报, 2015, 35(s2): s230003.

    张园园, 王旭平, 刘冰, 等. 无序激光晶体Nd∶BaLaGa3O7的光谱研究[J]. 光学学报, 2015, 35(s2): s230003.

    张园园, 王旭平, 刘冰, 等. 无序激光晶体Nd∶BaLaGa3O7的光谱研究[J]. 光学学报, 2015, 35(s2): s230003.

    Zhang Y Y, Wang X P, Liu B, et al. Spectroscopic characterization of disordered Nd∶BaLaGa3O7 crystal[J]. Acta Optica Sinica, 2015, 35(s2): s230003.

    Zhang Y Y, Wang X P, Liu B, et al. Spectroscopic characterization of disordered Nd∶BaLaGa3O7 crystal[J]. Acta Optica Sinica, 2015, 35(s2): s230003.

    Zhang Y Y, Wang X P, Liu B, et al. Spectroscopic characterization of disordered Nd∶BaLaGa3O7 crystal[J]. Acta Optica Sinica, 2015, 35(s2): s230003.

[13] Wang D Z, Yan B X, Bi Y, et al. Three-wavelength green laser using intracavity frequency conversion of Nd∶Mg∶LiTaO3 with a MgO∶PPLN crystal[J]. Applied Physics B, 2014, 117(4): 1117-1121.

    Wang D Z, Yan B X, Bi Y, et al. Three-wavelength green laser using intracavity frequency conversion of Nd∶Mg∶LiTaO3 with a MgO∶PPLN crystal[J]. Applied Physics B, 2014, 117(4): 1117-1121.

    Wang D Z, Yan B X, Bi Y, et al. Three-wavelength green laser using intracavity frequency conversion of Nd∶Mg∶LiTaO3 with a MgO∶PPLN crystal[J]. Applied Physics B, 2014, 117(4): 1117-1121.

[14] Feng T, Li T, Zhao S, et al. Performance of diode-pumped continuous wave tunable and passively Q-switched Nd, Mg∶LiTaO3 laser[J]. Optics Communications, 2014, 325: 92-94.

    Feng T, Li T, Zhao S, et al. Performance of diode-pumped continuous wave tunable and passively Q-switched Nd, Mg∶LiTaO3 laser[J]. Optics Communications, 2014, 325: 92-94.

    Feng T, Li T, Zhao S, et al. Performance of diode-pumped continuous wave tunable and passively Q-switched Nd, Mg∶LiTaO3 laser[J]. Optics Communications, 2014, 325: 92-94.

[15] Sun D H, Leng Y H, Sang Y H, et al. Nd∶MgO∶LiTaO3 crystal for self-doubling laser applications: Growth, structure, thermal and laser properties[J]. CrystEngComm, 2013, 15(37): 7468-7474.

    Sun D H, Leng Y H, Sang Y H, et al. Nd∶MgO∶LiTaO3 crystal for self-doubling laser applications: Growth, structure, thermal and laser properties[J]. CrystEngComm, 2013, 15(37): 7468-7474.

    Sun D H, Leng Y H, Sang Y H, et al. Nd∶MgO∶LiTaO3 crystal for self-doubling laser applications: Growth, structure, thermal and laser properties[J]. CrystEngComm, 2013, 15(37): 7468-7474.

[16] Li H Q, Tang Y L, Zhang R. Efficient acousto-optic Q-switched Nd,Mg∶LiTaO3 lasers[J]. Laser Physics Letters, 2013, 10(4): 045809.

    Li H Q, Tang Y L, Zhang R. Efficient acousto-optic Q-switched Nd,Mg∶LiTaO3 lasers[J]. Laser Physics Letters, 2013, 10(4): 045809.

    Li H Q, Tang Y L, Zhang R. Efficient acousto-optic Q-switched Nd,Mg∶LiTaO3 lasers[J]. Laser Physics Letters, 2013, 10(4): 045809.

[17] 彭方, 张庆礼, 王小飞, 等. Nd 3+∶SrY2O4粉体的制备、结构与光谱性能研究 [J]. 物理学报, 2016, 65(1): 014211.

    彭方, 张庆礼, 王小飞, 等. Nd 3+∶SrY2O4粉体的制备、结构与光谱性能研究 [J]. 物理学报, 2016, 65(1): 014211.

    彭方, 张庆礼, 王小飞, 等. Nd 3+∶SrY2O4粉体的制备、结构与光谱性能研究 [J]. 物理学报, 2016, 65(1): 014211.

    Peng F, Zhang Q L, Wang X F, et al. Synthesis, structure and spectroscopic properties of Nd 3+∶SrY2O4 phosphor [J]. Acta Physica Sinica, 2016, 65(1): 014211.

    Peng F, Zhang Q L, Wang X F, et al. Synthesis, structure and spectroscopic properties of Nd 3+∶SrY2O4 phosphor [J]. Acta Physica Sinica, 2016, 65(1): 014211.

    Peng F, Zhang Q L, Wang X F, et al. Synthesis, structure and spectroscopic properties of Nd 3+∶SrY2O4 phosphor [J]. Acta Physica Sinica, 2016, 65(1): 014211.

[18] Wu J C, Chen Z B, Choubey R K, et al. On the study of zinc doping in congruent LiTaO3 crystals[J]. Materials Chemistry and Physics, 2012, 133(2/3): 813-817.

    Wu J C, Chen Z B, Choubey R K, et al. On the study of zinc doping in congruent LiTaO3 crystals[J]. Materials Chemistry and Physics, 2012, 133(2/3): 813-817.

    Wu J C, Chen Z B, Choubey R K, et al. On the study of zinc doping in congruent LiTaO3 crystals[J]. Materials Chemistry and Physics, 2012, 133(2/3): 813-817.

[19] Dai L, Yan Z H, Jiao S S, et al. Effect of [Li]/[Nb] ratios on the absorption and up-conversion emission spectra in In∶Yb∶Ho∶LiNbO3 crystal[J]. Journal of Alloy and Compounds, 2015, 644: 502-505.

    Dai L, Yan Z H, Jiao S S, et al. Effect of [Li]/[Nb] ratios on the absorption and up-conversion emission spectra in In∶Yb∶Ho∶LiNbO3 crystal[J]. Journal of Alloy and Compounds, 2015, 644: 502-505.

    Dai L, Yan Z H, Jiao S S, et al. Effect of [Li]/[Nb] ratios on the absorption and up-conversion emission spectra in In∶Yb∶Ho∶LiNbO3 crystal[J]. Journal of Alloy and Compounds, 2015, 644: 502-505.

[20] Sun T, Zhang X D, Sun L, et al. Nonvolatile photorefractive properties in triply doped stoichiometric Mg∶Fe∶Mn∶LiTaO3 crystals[J]. Chinese Physics B, 2014, 23(3): 014204.

    Sun T, Zhang X D, Sun L, et al. Nonvolatile photorefractive properties in triply doped stoichiometric Mg∶Fe∶Mn∶LiTaO3 crystals[J]. Chinese Physics B, 2014, 23(3): 014204.

    Sun T, Zhang X D, Sun L, et al. Nonvolatile photorefractive properties in triply doped stoichiometric Mg∶Fe∶Mn∶LiTaO3 crystals[J]. Chinese Physics B, 2014, 23(3): 014204.

[21] Dai L, Yan Z, Jiao S, et al. Effect of dopant concentration on the spectroscopic properties in an In 3+ doped (0, 1, 2 and 4 mol%) Yb∶Tm-LiNbO3 crystal [J]. RSC Advances, 2015, 5(46): 36385-36389.

    Dai L, Yan Z, Jiao S, et al. Effect of dopant concentration on the spectroscopic properties in an In 3+ doped (0, 1, 2 and 4 mol%) Yb∶Tm-LiNbO3 crystal [J]. RSC Advances, 2015, 5(46): 36385-36389.

    Dai L, Yan Z, Jiao S, et al. Effect of dopant concentration on the spectroscopic properties in an In 3+ doped (0, 1, 2 and 4 mol%) Yb∶Tm-LiNbO3 crystal [J]. RSC Advances, 2015, 5(46): 36385-36389.

[22] Luo S H, Sun X D, Shi H X, et al. Defect structure and optical damage resistance of In∶Fe∶Cu∶LiNbO3 crystals[J]. Journal of Modern Optics, 2009, 56(1): 115-119.

    Luo S H, Sun X D, Shi H X, et al. Defect structure and optical damage resistance of In∶Fe∶Cu∶LiNbO3 crystals[J]. Journal of Modern Optics, 2009, 56(1): 115-119.

    Luo S H, Sun X D, Shi H X, et al. Defect structure and optical damage resistance of In∶Fe∶Cu∶LiNbO3 crystals[J]. Journal of Modern Optics, 2009, 56(1): 115-119.

[23] Akhmatkhanov A R, Chuvakova M A, Vaskina E M, et al. Polarization reversal process in MgO doped congruent lithium tantalate single crystals[J]. Ferroelectrics, 2015, 476(1): 57-68.

    Akhmatkhanov A R, Chuvakova M A, Vaskina E M, et al. Polarization reversal process in MgO doped congruent lithium tantalate single crystals[J]. Ferroelectrics, 2015, 476(1): 57-68.

    Akhmatkhanov A R, Chuvakova M A, Vaskina E M, et al. Polarization reversal process in MgO doped congruent lithium tantalate single crystals[J]. Ferroelectrics, 2015, 476(1): 57-68.

[24] Shi H X, Sun X D, Luo S H, et al. Defect structure and optical damage resistance of Hf∶Fe∶LiNbO3 crystals[J]. Optics and Laser Technology, 2010, 42(7): 1118-1121.

    Shi H X, Sun X D, Luo S H, et al. Defect structure and optical damage resistance of Hf∶Fe∶LiNbO3 crystals[J]. Optics and Laser Technology, 2010, 42(7): 1118-1121.

    Shi H X, Sun X D, Luo S H, et al. Defect structure and optical damage resistance of Hf∶Fe∶LiNbO3 crystals[J]. Optics and Laser Technology, 2010, 42(7): 1118-1121.

[25] He C J, Zhang Y G, Sun L. Electrical and optical properties of Nd 3+-doped Na0.5Bi0.5TiO3 ferroelectric single crystal [J]. Journal of Physics D: Applied Physics, 2013, 46(24): 245104.

    He C J, Zhang Y G, Sun L. Electrical and optical properties of Nd 3+-doped Na0.5Bi0.5TiO3 ferroelectric single crystal [J]. Journal of Physics D: Applied Physics, 2013, 46(24): 245104.

    He C J, Zhang Y G, Sun L. Electrical and optical properties of Nd 3+-doped Na0.5Bi0.5TiO3 ferroelectric single crystal [J]. Journal of Physics D: Applied Physics, 2013, 46(24): 245104.

[26] Bäumer C, David C, Tunyagi A, et al. Composition dependence of the ultraviolet absorption edge in lithium tantalite[J]. Journal of Applied Physics, 2003, 93(5): 3102.

    Bäumer C, David C, Tunyagi A, et al. Composition dependence of the ultraviolet absorption edge in lithium tantalite[J]. Journal of Applied Physics, 2003, 93(5): 3102.

    Bäumer C, David C, Tunyagi A, et al. Composition dependence of the ultraviolet absorption edge in lithium tantalite[J]. Journal of Applied Physics, 2003, 93(5): 3102.

[27] Zheng W, Wang D P, Xu Y H. Growth and property of Zn-doped near-stoichiometric LiTaO3 crystal[J]. Journal of Crystal Growth, 2010, 312(11): 1879-1882.

    Zheng W, Wang D P, Xu Y H. Growth and property of Zn-doped near-stoichiometric LiTaO3 crystal[J]. Journal of Crystal Growth, 2010, 312(11): 1879-1882.

    Zheng W, Wang D P, Xu Y H. Growth and property of Zn-doped near-stoichiometric LiTaO3 crystal[J]. Journal of Crystal Growth, 2010, 312(11): 1879-1882.

[28] Nakamura M, Takekawa S, Liu Y W, et al. Growth and characterization of Sc-doped near-stoichiometric LiTaO3 crystals[J]. Journal of Crystal Growth, 2009, 311(2): 272-277.

    Nakamura M, Takekawa S, Liu Y W, et al. Growth and characterization of Sc-doped near-stoichiometric LiTaO3 crystals[J]. Journal of Crystal Growth, 2009, 311(2): 272-277.

    Nakamura M, Takekawa S, Liu Y W, et al. Growth and characterization of Sc-doped near-stoichiometric LiTaO3 crystals[J]. Journal of Crystal Growth, 2009, 311(2): 272-277.

[29] 何坤娜, 李德华, 魏志义. Nd 3+掺杂无序晶体被动锁模激光器的研究现状 [J]. 中国激光, 2016, 43(10): 1000001.

    何坤娜, 李德华, 魏志义. Nd 3+掺杂无序晶体被动锁模激光器的研究现状 [J]. 中国激光, 2016, 43(10): 1000001.

    何坤娜, 李德华, 魏志义. Nd 3+掺杂无序晶体被动锁模激光器的研究现状 [J]. 中国激光, 2016, 43(10): 1000001.

    He K N, Li D H, Wei Z Y. Research status of passively mode-locked laser based on Nd 3+-doped disordered crystals [J]. Chinese Journal of Lasers, 2016, 43(10): 1000001.

    He K N, Li D H, Wei Z Y. Research status of passively mode-locked laser based on Nd 3+-doped disordered crystals [J]. Chinese Journal of Lasers, 2016, 43(10): 1000001.

    He K N, Li D H, Wei Z Y. Research status of passively mode-locked laser based on Nd 3+-doped disordered crystals [J]. Chinese Journal of Lasers, 2016, 43(10): 1000001.

赫崇君, 李伟立, 王吉明, 顾晓蓉, 吴彤, 刘友文. 铟钕掺杂钽酸锂单晶的生长及光学性能[J]. 光学学报, 2018, 38(1): 0116003. Chongjun He, Weili Li, Jiming Wang, Xiaorong Gu, Tong Wu, Youwen Liu. Growth and Optical Properties of Lithium Tantalate Single Crystals Doped with Indium and Neodymium[J]. Acta Optica Sinica, 2018, 38(1): 0116003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!