Author Affiliations
Abstract
1 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, State Key Laboratory of High Field Laser Physics, Shanghai, China
2 South China University of Technology, School of Physics and Optoelectronics, Guangzhou, China
A supercontinuum white laser with ultrabroad bandwidth, intense pulse energy, and high spectral flatness can be accomplished via synergic action of third-order nonlinearity (3rd-NL) and second-order nonlinearity. In this work, we employ an intense Ti:sapphire femtosecond laser with a pulse duration of 50 fs and pulse energy up to 4 mJ to ignite the supercontinuum white laser. Remarkably, we use water instead of the usual solid materials as the 3rd-NL medium exhibiting both strong self-phase modulation and stimulated Raman scattering effect to create a supercontinuum laser with significantly broadened bandwidth and avoid laser damage and destruction. Then the supercontinuum laser is injected into a water-embedded chirped periodically poled lithium niobate crystal that enables broadband and high-efficiency second-harmonic generation. The output white laser has a 10 dB bandwidth encompassing 413 to 907 nm, more than one octave, and a pulse energy of 0.6 mJ. This methodology would open up an efficient route to creating a long-lived, high-stability, and inexpensive white laser with intense pulse energy, high spectral flatness, and ultrabroad bandwidth for application to various areas of basic science and high technology.
intense white laser optical-damage-free water third-order nonlinearity second-order nonlinearity 
Advanced Photonics Nexus
2024, 3(1): 016008
Tianjiang He 1,2Suping Liu 1,*Wei Li 1,2Li Zhong 1,2[ ... ]Zhennuo Wang 1,2
Author Affiliations
Abstract
1 National Engineering Research Center for Optoelectronic Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 College of Materials Science and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
Output power and reliability are the most important characteristic parameters of semiconductor lasers. However, catastrophic optical damage (COD), which usually occurs on the cavity surface, will seriously damage the further improvement of the output power and affect the reliability. To improve the anti-optical disaster ability of the cavity surface, a non-absorption window (NAW) is adopted for the 915 nm InGaAsP/GaAsP single-quantum well semiconductor laser using quantum well mixing (QWI) induced by impurity-free vacancy. Both the principle and the process of point defect diffusion are described in detail in this paper. We also studied the effects of annealing temperature, annealing time, and the thickness of SiO2 film on the quantum well mixing in a semiconductor laser with a primary epitaxial structure, which is distinct from the previous structures. We found that when compared with the complete epitaxial structure, the blue shift of the semiconductor laser with the primary epitaxial structure is larger under the same conditions. To obtain the appropriate blue shift window, the primary epitaxial structure can use a lower annealing temperature and shorter annealing time. In addition, the process is less expensive. We also provide references for upcoming device fabrication.
catastrophic optical damage primary epitaxial structure impurity-free vacancy disordering quantum well intermixing non-absorption window 
Journal of Semiconductors
2023, 44(10): 102302
何林安 1,2周坤 1,2张亮 1,2李弋 1,2[ ... ]唐淳 1,2
作者单位
摘要
1 中国工程物理研究院 高能激光科学与技术重点实验室,四川 绵阳 621900
2 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
设计并制备了一款780 nm半导体激光器,并进行了外腔反馈锁模研究。利用金属有机化学气相沉积技术制备了激光器外延层,采用GaAsP/GaInP作为量子阱/波导层有源区,限制层采用低折射率AlGaInP材料。采用超高真空解理钝化技术,在激光器腔面蒸镀无定形ZnSe钝化层。未钝化器件在输出功率2.5 W时发生腔面灾变损伤(COD),钝化后器件未发生COD现象,电流在10 A时输出功率10.1 W,电光转换效率54%。体布拉格光栅(VBG)外腔锁定前后,器件的光谱半峰全宽分别为2.6 nm和0.06 nm,VBG变温调控波长范围约230 pm。
半导体激光器 腔面灾变损伤 光谱调控 ZnSe 外腔反馈 semiconductor lasers catastrophic optical damage spectral adjustment ZnSe external cavity feedback 
强激光与粒子束
2021, 33(9): 091001
刘翠翠 1,2,*林楠 1,2熊聪 1曼玉选 1,2[ ... ]马骁宇 1,2
作者单位
摘要
1 中国科学院半导体研究所 光电子器件国家工程中心, 北京 100083
2 中国科学院大学, 北京 100049
光学灾变损伤(COD)常发生于量子阱半导体激光器的前腔面处, 极大地影响了激光器的出光功率及寿命。通过杂质诱导量子阱混杂技术使腔面区波长蓝移来制备非吸收窗口是抑制腔面COD的有效手段, 也是一种高效率、低成本方法。本文选择了Si杂质作为量子阱混杂的诱导源, 使用金属有机化学气相沉积设备生长了InGaAs/AlGaAs量子阱半导体激光器外延结构、Si杂质扩散层及Si3N4保护层。热退火处理后, Si杂质扩散诱导量子阱区和垒区材料互扩散, 量子阱禁带变宽, 输出波长发生蓝移。退火会影响外延片的表面形貌, 而表面形貌则可能会影响后续封装工艺中电极的制备。结合光学显微镜及光致发光谱的测试结果, 得到825 ℃/2 h退火条件下约93 nm的最大波长蓝移量, 也证明退火对表面形貌的改变, 不会影响波长蓝移效果及后续电极工艺。
量子阱半导体激光器 光学灾变损伤 量子阱混杂 蓝移 quantum well semiconductor laser diodes catastrophe optical damage quantum well intermixing blue shift 
中国光学
2020, 13(1): 203
作者单位
摘要
北京工业大学 激光工程研究院,北京 100124
全固态皮秒放大器的平均输出功率易受到增益晶体中自聚焦效应的影响。通过引入补偿元件—砷化镓(GaAs)片可以避免自聚焦效应造成的损伤,关于砷化镓的抑制机理对高峰值功率Nd:YAG晶体皮秒放大器系统的进行理论分析和实验研究。以公式计算得到了GaAs材料的非线性折射率系数,并由数值模拟给出了在抑制自聚焦的最佳效果下GaAs片厚度与Nd : YAG棒长度的关系。在入射皮秒激光束中心波长为1 064 nm、重复频率为1 kHz、峰值功率密度为12 GW/cm2的条件下,进行了不同厚度(200 μm和550 μm)GaAs片对抑制Nd:YAG棒自聚焦损伤的实验研究。通过优化GaAs片的厚度,该补偿方法在高峰值功率皮秒脉冲条件下,特别是对于Nd:YAG放大器显示出较高的效率。
自聚焦效应 非线性折射率系数 光学损伤 B积分 self-focusing effect nonlinear refractive index coefficient optical damage B-integral 
红外与激光工程
2019, 48(9): 0905001
Author Affiliations
Abstract
Racah Institute of Physics, Hebrew University, Jerusalem, 91904, Israel
Enhanced acceleration of protons to high energy by relatively modest high power ultra-short laser pulses, interacting with snow micro-structured targets was recently proposed. A notably increased proton energy was attributed to a combination of several mechanisms such as localized enhancement of the laser field intensity near the tip of $1~\unicode[STIX]{x03BC}\text{m}$ size whisker and increase in the hot electron concentration near the tip. Moreover, the use of mass-limited target prevents undesirable spread of absorbed laser energy out of the interaction zone. With increasing laser intensity a Coulomb explosion of the positively charged whisker will occur. All these mechanisms are functions of the local density profile and strongly depend on the laser pre-pulse structure. To clarify the effect of the pre-pulse on the state of the snow micro-structured target at the time of interaction with the main pulse, we measured the optical damage threshold (ODT) of the snow targets. ODT of $0.4~\text{J}/\text{cm}^{2}$ was measured by irradiating snow micro-structured targets with 50 fs duration pulses of Ti:Sapphire laser.
high intensity laser ion acceleration optical damage threshold 
High Power Laser Science and Engineering
2018, 6(1): 010000e7
作者单位
摘要
南京航空航天大学理学院, 江苏 南京 211106
采用提拉法生长了双掺杂钕离子(Nd 3+)和铟离子(In 3+)的同成分LiTaO3单晶。测量了该单晶的紫外-可见光吸收光谱,分析了该晶体的缺陷结构,得到了铟离子的掺杂浓度阈值。当铟离子掺杂浓度达到该阈值时,In∶Nd∶LiTaO3晶体的抗光损伤能力显著增强。铟离子取代晶体中的反位T aLi4+,使晶体光电导增大,减弱了光折变效应。In∶Nd∶LiTaO3晶体在光波长0.808 μm处的吸收峰的半峰全宽为15 nm,吸收截面为5.26×10 -21 cm 2。采用0.808 μm半导体激光作为抽运源,钕离子在光波长1.06 μm处出现强烈的荧光带。这些研究结果表明, In∶Nd∶LiTaO3 作为多功能晶体可以应用于高功率的光子学或光电子学器件中。
材料 钽酸锂晶体 缺陷结构 光损伤 荧光特性 
光学学报
2018, 38(1): 0116003
胡海 1,2,3仇伯仓 1,2,3何晋国 1,2,3汪卫敏 2[ ... ]白雪 2
作者单位
摘要
1 深圳清华大学研究院, 广东 深圳 518057
2 深圳瑞波光电子有限公司, 广东 深圳 518055
3 广东省光机电一体化重点实验室, 广东 深圳 518057
设计并制作了波长为976 nm的宽条大功率半导体激光芯片。采用非对称宽波导外延结构设计及金属有机化学气相外延技术生长了低损耗、高效率的外延材料。制备了190 μm发光区宽度、4 mm腔长、976 nm波长的半导体激光芯片,并将其封装为COS器件。测试结果表明:封装器件在室温下的阈值电流为1.05 A,斜率效率为1.12 W/A,最高电光转换效率可达到68.5%; 在40 ℃、19.5 W功率输出时的电光转换效率可以达到60%; 9个器件在40 ℃和15 A电流下老化4740 h后,无一失效,而且老化前后的功率-电流曲线和光谱没有变化,证明该激光芯片具极高的稳定性和可靠性。
激光器 半导体激光器 电光转换效率 亮度 腔面灾变功率 
中国激光
2018, 45(8): 0801006
作者单位
摘要
1 中国科学院半导体研究所 光电子器件国家工程研究中心, 北京100083
2 中国科学院大学 材料科学与光电技术学院, 北京100049
利用电致发光(EL)的方法, 研究了突然失效的975 nm大功率应变量子阱激光器。起初, 我们以为激光器失效是由于腔面发生了突然光学灾变(COMD)。然而, 通过EL实验, 发现其中一部分激光器腔面没有任何损伤, 而内部发生了突然光学灾变(COBD), 为工艺的进一步改善指明了方向。对90只发生COD的激光器进行EL成像, 发现暗线缺陷(DLD)起始于腔面或是激光器内部。DLD是严重的非辐射复合区, 通常沿着有源区延伸出几个分支, 造成激光器功率急剧下降。详细分析了不同COD模式的特征并进行了对比。并进一步分析了两种典型COD模式发生的原因, 然后给出了抑制COD和提高大功率半导体激光器性能的建议。
大功率半导体激光器 失效模式分析 电致发光 突然光学灾变 暗线缺陷 high-power diode lasers failure mode analysis electroluminescence catastrophic optical damage dark line defect 
发光学报
2018, 39(2): 180
王鑫 1,2,*赵懿昊 1朱凌妮 1侯继达 1,2[ ... ]刘素平 1
作者单位
摘要
1 中国科学院半导体研究所 光电子器件国家工程研究中心, 北京 100083
2 中国科学院大学, 北京 100049
为了提高915 nm半导体激光器腔面抗光学灾变的能力, 采用基于SiO2薄膜无杂质诱导量子阱混合法制备符合915 nm半导体激光器AlGaInAs单量子阱的非吸收窗口.研究了无杂质空位诱导量子阱混合理论及不同退火温度、不同退火时间、SiO2薄膜厚度、SiO2薄膜折射率、不同盖片等试验参数对制备非吸窗口的影响, 并且讨论了SiO2薄膜介质膜的多孔性对无杂质诱导量子阱混合的影响.实验制备出蓝移波长为53 nm的非吸收窗口, 最佳制备非吸收窗口条件为退火温度为875℃, 退火时间为90s, SiO2薄膜折射率为1.447, 厚度为200 nm, 使用GaAs盖片.
半导体激光器 光学灾变 量子阱混杂 非吸收窗口 薄膜 Semiconductor laser Catastrophic optical damage Quantum well intermixing Non-absorbing window Film 
光子学报
2018, 47(3): 0314003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!