李弋 1,2王浩淼 1,2张亮 1,2贺钰雯 1,2,*[ ... ]唐淳 1,2
作者单位
摘要
1 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
2 中国工程物理研究院 高能激光科学与技术重点实验室,四川 绵阳 621900
设计并制备了780 nm大功率半导体激光器的单管和巴条。采用金属有机化学气相沉积技术制备的外延结构,分别使用GaAsP和GaInP作为量子阱和波导层,限制层是具有高带隙的AlGaInP材料。量子阱与波导层带隙0.15 eV,波导层与限制层带隙0.28 eV,抑制了载流子泄露。1.55 μm厚非对称大光学腔波导结构抑制快轴高阶模,同时缓解腔面损伤问题。为进一步提高腔面损伤阈值,利用超高真空解理和钝化技术,在腔面上沉积了非晶ZnSe钝化层。条宽150 μm、腔长4 mm的单管器件,在电流为15 A时,输出连续功率16.3 W未出现COD现象,斜率效率达到1.27 W/A,电光转换效率为58%,慢轴发散角9.9°,光谱半高宽为1.81 nm。填充因子为40%的厘米巴条,在192 A下实现连续输出功率180 W,电光转换效率为50.7%,光谱宽度仅为2.2 nm。
半导体激光器 泵浦源 高效率 腔面光学灾变损伤 硒化锌 semiconductor laser pump source high efficiency catastrophic optical mirror damage ZnSe 
强激光与粒子束
2023, 35(11): 111002
王予晓 1,2朱凌妮 1,*仲莉 1,3,*孔金霞 1[ ... ]马骁宇 1,3
作者单位
摘要
1 中国科学院半导体研究所 光电子器件国家工程中心, 北京 100083
2 中国科学院大学 电子电气与通信工程学院, 北京 100049
3 中国科学院大学 材料科学与光电技术学院, 北京 100049
腔面光学灾变损伤是制约半导体激光器输出功率以及可靠性的主要因素之一,量子阱混杂技术是最常用的解决腔面灾变性光学损伤的方法。为了制备高功率、高可靠性半导体激光器单管器件,对Si杂质诱导量子阱混杂工艺进行了探索。本文使用Si介质层作为扩散源,采用管式炉高温退火的方法进行Si杂质扩散诱导量子阱混杂研究。实验并分析了介质膜厚度、退火条件、量子垒材料、牺牲层材料等因素对InGaAs/GaAs(P)量子阱蓝移量的影响。实验发现,量子阱和量子垒的混杂效果随着扩散时间以及退火温度增加而增大,且对温度尤其敏感。当退火条件为780 ℃、10 h时,InGaAs/GaAsP结构的波长蓝移量达到70.5 nm,量子垒为GaAsP时比GaAs有更好的促进蓝移效果。相同外延结构下,InGaP牺牲层结构相比AlGaAs牺牲层有更大的波长蓝移。
量子阱混杂 半导体激光器 腔面光学灾变损伤 quantum well intermixing semiconductor laser diodes COMD 
中国光学
2022, 15(3): 426
王予晓 1,2朱凌妮 1,*仲莉 1,3,*祁琼 1[ ... ]马骁宇 1,3
作者单位
摘要
1 中国科学院半导体研究所 光电子器件国家工程中心,北京 100083
2 中国科学院大学 电子电气与通信工程学院,北京 100049
3 中国科学院大学 材料科学与光电技术学院,北京 100049
腔面光学灾变损伤是制约半导体激光器输出功率以及可靠性的主要因素之一。为制备高功率和高可靠性半导体器件,初步探索了Si杂质诱导量子阱混杂技术,并将其应用于975 nm半导体激光器件的非吸收窗口制备工艺。采用循环退火方式,研究了不同条件下Si杂质诱导量子阱混杂的效果,当退火温度为830 ℃,退火时间为10 min,循环次数为3次时,达到最大波长蓝移量59 nm。分别在800 ℃ 5次10 min和830 ℃ 3次10 min退火条件下制备了非吸收窗口。与普通器件相比,制备非吸收窗口的器件阈值电流增大,斜率效率下降,工作电流大于10 A后器件斜率效率降低,电流-工作电流曲线呈现饱和趋势。相较之下,800 ℃ 5次10 min条件下对应的器件性能相对较好。工作电流达到15 A后普通器件失效,而制备了非吸收窗口的器件则在电流大于20 A后仍可正常工作,腔面光学灾变损伤阈值提高了33.0%以上。
半导体激光器 量子阱混杂 非吸收窗口 腔面光学灾变损伤  退火 Semiconductor laser Quantum well intermixing Non-absorbing window Catastrophic optical mirror degradation Si Annealing 
光子学报
2022, 51(2): 0251210
刘翠翠 1,2,*林楠 3,4马骁宇 3,4井红旗 3,4刘素平 3,4
作者单位
摘要
1 中国原子能科学研究院 核物理所, 北京 102413
2 国防科技工业抗辐照应用技术创新中心, 北京 102413
3 中国科学院半导体研究所 光电子器件国家工程中心, 北京 100083
4 中国科学院大学, 北京 100049
为了解决限制近红外单发射区InGaAs/AlGaAs量子阱半导体激光二极管失效阈值功率提升的腔面光学灾变损伤问题, 研制了一种带有Si杂质诱导量子阱混杂非吸收窗口的新型激光二极管, 并对其性能进行了测试分析。首先, 对于带有非吸收窗口的二极管, 在其谐振腔上方前后腔面附近的窗口区域覆盖50 nm Si/100 nm SiO2组合介质层, 在远离腔面的增益区域覆盖50 nm Si/100 nm TiO2组合介质层, 并采用875 ℃/90 s快速热处理工艺促进Si杂质扩散诱导量子阱混杂并去除非辐射复合中心。然后, 基于相同外延结构、相同流片工艺制备了无非吸收窗口的激光二极管作对照组。测试结果显示, 带有非吸收窗口的新型激光二极管平均峰值输出功率提升约33.6%, 平均峰值输出电流提升约50.4%, 腔面光学灾变损伤的发生概率和破坏程度均明显降低, 且其阈值电流、斜率效率及半高全宽等特性也无任何退化。该研究证明, 采用Si杂质诱导量子阱混杂技术制备的非吸收窗口, 对近红外单发射区InGaAs/AlGaAs量子阱半导体激光二极管腔面光学灾变损伤有明显的抑制效果。
半导体激光二极管 腔面光学灾变损伤 量子阱混杂 非吸收窗口 semiconductor lasers catastrophic optical mirror damage quantum well intermixing non-absorption window 
发光学报
2022, 43(1): 110
作者单位
摘要
1 中国科学院半导体研究所光电子器件国家工程中心, 北京 100083
2 中国科学院大学材料科学与光电技术学院, 北京 100049

高输出功率和长期可靠性是高功率半导体激光器得以广泛应用的前提,但高功率密度下腔面退化导致的光学灾变损伤(COD)制约了激光器的最大输出功率和可靠性。为了提高915 nm InGaAsP/GaAsP半导体激光器的COD阈值,利用金属有机物化学气相沉积设备来外延生长初次样片。探讨了量子阱混杂对初次外延片发光的影响。此外,使用光致发光谱测量了波峰蓝移量和发光强度。实验结果表明,在退火温度为890 ℃、退火时间为10 min条件下,波峰蓝移量达到了62.5 nm。对初次外延片进行量子阱混杂可得到较大的波峰蓝移量,且在退火温度为800~890 ℃、退火时间为10 min的条件下峰值强度均保持在原样片峰值强度的75%以上。

激光器 高功率半导体激光器 快速热退火 量子阱混杂 光学灾变损伤 非吸收窗口 
光学学报
2022, 42(1): 0114003
刘翠翠 1,2,*林楠 1,2熊聪 1曼玉选 1,2[ ... ]马骁宇 1,2
作者单位
摘要
1 中国科学院半导体研究所 光电子器件国家工程中心, 北京 100083
2 中国科学院大学, 北京 100049
光学灾变损伤(COD)常发生于量子阱半导体激光器的前腔面处, 极大地影响了激光器的出光功率及寿命。通过杂质诱导量子阱混杂技术使腔面区波长蓝移来制备非吸收窗口是抑制腔面COD的有效手段, 也是一种高效率、低成本方法。本文选择了Si杂质作为量子阱混杂的诱导源, 使用金属有机化学气相沉积设备生长了InGaAs/AlGaAs量子阱半导体激光器外延结构、Si杂质扩散层及Si3N4保护层。热退火处理后, Si杂质扩散诱导量子阱区和垒区材料互扩散, 量子阱禁带变宽, 输出波长发生蓝移。退火会影响外延片的表面形貌, 而表面形貌则可能会影响后续封装工艺中电极的制备。结合光学显微镜及光致发光谱的测试结果, 得到825 ℃/2 h退火条件下约93 nm的最大波长蓝移量, 也证明退火对表面形貌的改变, 不会影响波长蓝移效果及后续电极工艺。
量子阱半导体激光器 光学灾变损伤 量子阱混杂 蓝移 quantum well semiconductor laser diodes catastrophe optical damage quantum well intermixing blue shift 
中国光学
2020, 13(1): 203
作者单位
摘要
重庆光电技术研究所 ,重庆 400060
针对大功率隧道结半导体激光器因光学灾变损伤(COD)而导致输出光功率无法进 一步提高的问题,通过优化器件材料结构,提高了其COD阈 值.采用标准的半导体 激光器制作工艺,制作了发光区条宽为200μm、腔长为900μm的单隧道结半导体激光器. 在脉冲宽度为 200ns、重复频率为5kHz的室温下进行 测 试,器 件 峰 值 功 率 超 过 70 W,并 且 无 明 显 COD 现 象 发 生. 在 20A 工作电流下,器件峰值波长为907nm,光谱宽度为7nm,斜率效率为1.88,接近相同工作电流下单有源层激光器的两倍.
大功率 单隧道结激光器 光学灾变损伤 材料结构 highGpower single tunnel junction laser COD material structure 
半导体光电
2018, 39(3): 345
作者单位
摘要
1 山东华光光电子股份有限公司, 山东 济南 250101
2 济南大学物理科学与技术学院, 山东 济南 250022
3 山东大学晶体材料国家重点实验室, 山东 济南 250100
通过对大功率激光器腔面光学灾变损伤的研究, 分析了激光器腔面镀膜的损伤机理。为了提高激光器的输出功率, 采用TiO2替换Si作为高折射率材料, 建立非标准膜系降低电场强度, 同时优化膜层材料的粗糙度, 并采用离子源进行清洗和助镀, 有效提高了激光器的腔面光学灾变损伤阈值。结果表明, 所制作的808 nm激光器, 最大连续输出功率达到13.6 W。
激光器 光学灾变损伤 腔面镀膜 808 nm波长 
中国激光
2018, 45(1): 0101013
作者单位
摘要
长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
研究分析了980 nm半导体激光器的腔面温度特性。半导体激光器腔面光学灾变损伤(COD)是限制器件寿命和高功率输出的主要因素,通过分析腔面热源,建立腔面温度分布模型,分析了腔面温度场分布。设计了以金刚石为钝化膜的腔面增透膜和高反膜,模拟和对比了镀有金刚石钝化膜与未镀金刚石钝化膜的980 nm半导体激光器腔面温度特性。分析结果表明,镀有金刚石钝化膜比未镀金刚石钝化膜的器件的腔面温度低9.0626 ℃。因此在980 nm半导体激光器腔面镀金刚石钝化膜能够有效降低腔面温度,提高腔面COD阈值。
激光器 半导体激光器 光学灾变损伤 腔面温度 金刚石 
中国激光
2013, 40(11): 1102004
作者单位
摘要
1 西安理工大学电子工程系, 陕西 西安 710048
2 西北大学物理系, 陕西 西安 710069
3 中国科学院半导体研究所, 北京 100083
在激光器腔面处制作非吸收窗口(NAW)可以有效地减少光吸收, 防止激光器过早出现光学灾变损伤(COD), 是提高大功率半导体激光器的功率特性的重要手段之一。采用金属有机化学气相沉积(MOCVD)技术二次外延生长了大功率657 nm红光半导体激光器结构, 通过闭管扩散Zn的方法在腔面附近制作了非吸收窗口。实验发现扩散温度550 ℃, 扩散时间20 min时, 得到的非吸收窗口最为有效, 激光器连续工作的无扭折输出功率大于100 mW, 超过常规的无窗口结构激光器的最大输出功率的两倍, 激光器的斜率效率提高了23%。测量该类器件的温度特性发现, 环境温度为20~70 ℃时, 其输出功率均可大于50 mW, 计算得到激光器的特征温度约为89 K, 波长增加率约为0.24 nm/℃。
激光器 半导体激光器 光学灾变损伤 非吸收窗口 量子阱混杂 
中国激光
2009, 36(1): 104

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!