王振诺 1,2仲莉 1,2,*张德帅 1,2,**刘素平 1[ ... ]马骁宇 1,2
作者单位
摘要
1 中国科学院半导体研究所光电子器件国家工程研究中心,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049
采用非对称大光腔外延结构设计制备出976 nm InGaAs/GaAsP应变补偿量子阱脊形半导体激光器,通过对外延结构的设计优化,以实现器件低远场发散角、低功耗的基横模稳定输出。所制备基横模脊形半导体激光器的脊宽为5 μm、腔长为1500 μm,在25 ℃测试温度下,可获得422 mW最大连续输出功率,峰值波长为973.3 nm,光谱线宽(FWHM)为1.4 nm。当注入电流为500 mA时,垂直和水平远场发散角(FWHM)分别为24.15°和3.90°。在15~35 ℃测试温度范围内对脊形半导体激光器的水平远场发散角进行测试分析,发现随着测试温度的升高,器件远场分布变化较小,水平远场发散角基本维持在3.9°左右。
激光器 976 nm半导体激光器 基横模脊形波导 低远场发散角 非对称大光腔结构 
光学学报
2024, 44(8): 0814002
作者单位
摘要
1 中国科学院半导体研究所 光电子器件国家工程研究中心, 北京 100083
2 中国科学院大学 材料科学与光电技术学院, 北京 100049
搭建了基于半导体可饱和吸收镜(SESAM)锁模的全保偏皮秒脉冲光纤激光器,对比分析了以多量子阱和体材料作为可饱和吸收层的SESAM对锁模激光器输出特性的影响。实验结果表明,多量子阱和体材料SESAM均可实现稳定的自启动锁模。随着量子阱周期数的增加,SESAM调制深度增大,激光器输出脉冲宽度变窄,具有更高的输出功率和更大的锁模区间。但量子阱周期数过高的SESAM具有较大非饱和损耗,使得相同泵浦功率下输出功率降低。在相同调制深度下,体材料SESAM的非饱和损耗偏大,降低了输出功率和光光转化效率,但对脉冲的窄化作用更显著。SESAM对输出脉冲的波长和光谱宽度无显著影响,主要受光纤布拉格光栅(FBG)控制。本文对SESAM的设计与选型具有一定指导意义。
光纤激光器 半导体可饱和吸收镜 超短脉冲 输出特性 fiber laser semiconductor saturable absorber mirror ultrashort pulse output characteristic 
发光学报
2024, 45(1): 149
张秋月 1,2林楠 1,*黄婷 1,2刘素平 1[ ... ]张志刚 3
作者单位
摘要
1 中国科学院半导体研究所光电子器件国家工程研究中心,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049
3 北京大学信息科学技术学院,北京 100871
为了提高应用于光纤激光器的多量子阱半导体可饱和吸收镜(SESAM)的特性参数,对其结构进行优化,模拟分析了不同量子阱周期数对器件电场分布、调制深度及反射光谱等参数的影响,结果表明,SESAM中吸收层量子阱周期数越大,SESAM在1064 nm处的反射率越低,调制深度越高,在低反射率处的带宽越窄,可饱和吸收镜对生长误差的容忍度也越小。利用金属有机化合物气相沉积(MOCVD)方法对3种量子阱周期数结构的SESAM进行外延生长,通过非线性测试及锁模实验对3种结构的样品进行测量与表征,结果表明,3种结构的SESAM均实现了自启动锁模,其稳定锁模的泵浦区间为150~200 mW。采用泵浦探测技术对15个量子阱周期的SESAM进行动态响应测试,其响应恢复时间为5 ps。
激光器 超快激光器 半导体可饱和吸收镜 泵浦探测 
光学学报
2023, 43(22): 2214001
张薇 1,2仲莉 1,*张德帅 1,2吴霞 1[ ... ]马骁宇 1
作者单位
摘要
1 中国科学院半导体研究所光电子器件国家工程研究中心,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049
采用超极化惰性气体的磁共振成像技术可大大提高肺部影像成像质量,其中自旋交换光泵作为超极化惰性气体的关键,通常是对碱金属铷进行泵浦,为获得较好的泵浦效率,要求泵浦源具有窄光谱宽度和高功率的特点。针对这一需求,提出以体布拉格光栅(VBG)作为外腔反馈元件的795 nm窄谱宽外腔半导体激光器设计,并对VBG的外腔锁模稳定性进行了分析讨论,最终实现了功率为6.36 W,谱宽低至0.036 nm 的795.245 nm单管外腔激光输出,为实现大功率的单管外腔半导体激光器奠定基础。
激光器 外腔半导体激光器 体布拉格光栅 窄谱宽 锁模 
光学学报
2023, 43(10): 1014004
潘智鹏 1,2李伟 1,*吕家纲 1,2常津源 1,2[ ... ]马骁宇 1,2
作者单位
摘要
1 中国科学院半导体研究所光电子器件国家工程中心,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049
应用传输矩阵法计算并分析了分布式布拉格反射镜(DBR)的堆叠方式对反射谱的影响,当入射介质为GaAs材料、出射介质为空气时,DBR以低折射率层/高折射率层(LH)的方式排列具有更高的反射率。研究了入射角度对DBR反射率的影响,利用角度相关的传输矩阵模型对DBR反射谱进行计算,结果表明,DBR反射谱随着入射角度的增加而蓝移,最大反射率随着入射角度的增加而增大。建立了940 nm波长下AlxGaAs的材料折射率与铝的原子数分数x之间的线性拟合模型,并通过多层剖分等效法,计算分析了渐变层对DBR反射谱特性的影响。相比于突变型DBR结构,渐变型DBR结构在维持最高反射率基本不变的情况下,反射带宽有所减小。
激光器 传输矩阵法 垂直腔面发射激光器 分布式布拉格反射镜 入射角度 渐变层 反射谱 
中国激光
2023, 50(7): 0701007
吕家纲 1,2李伟 1,*戚宇轩 1,2潘智鹏 1,2[ ... ]马骁宇 1
作者单位
摘要
1 中国科学院半导体研究所光电子器件国家工程研究中心,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049
基于微机电系统(MEMS)的850 nm可调谐垂直腔面发射激光器(VCSEL),设计了一种双曲线梁结构,以提升器件机械和调谐特性。通过分析传统等截面梁结构的受力情况,提出了双曲线结构优化设计,将梁结构端面的面积增大从而降低最大应力。理论仿真结果表明:优化后器件上反射镜的最大偏移量基本保持不变,支撑梁上下表面的最大应力分别降低了23.4%和17.0%,谐振频率增大了7.9%;当MEMS-VCSEL分别为半导体腔主导(SCD)结构和空气腔主导(ACD)结构时,波长调谐范围分别为16.6 nm和42 nm。该优化方式的优势在于不需要改变激光器的结构,同时可与其他优化方式兼容,具有一定的应用前景。
激光器 垂直腔面发射激光器 可调谐激光器 微机电系统 机械特性 调谐特性 
光学学报
2023, 43(1): 0114003
潘智鹏 1,2李伟 1,*戚宇轩 1,2吕家纲 1,2[ ... ]马骁宇 1,2
作者单位
摘要
1 中国科学院半导体研究所光电子器件国家工程中心,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049

光子晶体垂直腔面发射激光器(PCVCSEL)是在传统的氧化限制型垂直腔面发射激光器(VCSEL)的基础上引入二维光子晶体结构的一种新型激光器,可以实现大功率的基横模输出。提出了PCVCSEL结构的合理设计方法,当归一化频率Veff位于2.405附近时实现了稳定的基横模输出。通过二维等效折射率模型分析对比了基横模PCVCSEL和缩小氧化孔径实现基横模的传统VCSEL,前者可以实现更大的横向限制并具备更宽的光场宽度。通过热电耦合模型分析了PCVCSEL的电流分布和温度分布,证明电流和热量主要集中在氧化限制孔所对应的区域。成功制备出了单模输出功率达到1.6 mW的PCVCSEL,其激射波长为932 nm。

激光器 垂直腔面发射激光器 光子晶体 基横模 二维等效模型 热电耦合 
光学学报
2022, 42(14): 1414002
林楠 1,2仲莉 1,2,*黎海明 3马骁宇 1,2[ ... ]张志刚 4
作者单位
摘要
1 中国科学院半导体研究所光电子器件国家工程研究中心,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049
3 广东华快光子科技有限公司,广东 中山 528436
4 北京大学信息科学技术学院,北京 100871
应用于掺镱(Yb)光纤激光器的半导体可饱和吸收镜(SESAM)需要具有较高的调制深度,即将较厚的砷化铟镓(InGaAs)材料作为吸收层。然而,InGaAs材料与砷化镓(GaAs)衬底之间的大失配,导致过厚的InGaAs材料质量极易恶化,影响锁模效果。因此,优化的外延结构设计和高质量的外延材料成为研制高性能SESAM的关键。本文设计了吸收层InGaAs材料总厚度分别为150 nm和300 nm的两种应变补偿多量子阱(MQW)结构的SESAM,利用金属有机化合物气相沉积(MOCVD)方法进行外延材料生长,采用光致发光光谱仪、高分辨X射线衍射仪和分光光度计对外延材料特性进行表征,优化外延材料生长参数。将研制的两种SESAM应用到线型腔掺Yb光纤激光器中,实现稳定锁模的泵浦功率分别为130 mW和120 mW,输出激光脉宽分别为18.3 ps和9.6 ps。实验结果表明,吸收层InGaAs材料厚度为300 nm的SESAM更容易实现稳定锁模并获得脉宽较窄的激光脉冲输出。
激光器 超快激光器 半导体可饱和吸收镜 金属有机化合物气相沉积 应变补偿多量子阱结构 
中国激光
2022, 49(11): 1101002
王予晓 1,2朱凌妮 1,*仲莉 1,3,*孔金霞 1[ ... ]马骁宇 1,3
作者单位
摘要
1 中国科学院半导体研究所 光电子器件国家工程中心, 北京 100083
2 中国科学院大学 电子电气与通信工程学院, 北京 100049
3 中国科学院大学 材料科学与光电技术学院, 北京 100049
腔面光学灾变损伤是制约半导体激光器输出功率以及可靠性的主要因素之一,量子阱混杂技术是最常用的解决腔面灾变性光学损伤的方法。为了制备高功率、高可靠性半导体激光器单管器件,对Si杂质诱导量子阱混杂工艺进行了探索。本文使用Si介质层作为扩散源,采用管式炉高温退火的方法进行Si杂质扩散诱导量子阱混杂研究。实验并分析了介质膜厚度、退火条件、量子垒材料、牺牲层材料等因素对InGaAs/GaAs(P)量子阱蓝移量的影响。实验发现,量子阱和量子垒的混杂效果随着扩散时间以及退火温度增加而增大,且对温度尤其敏感。当退火条件为780 ℃、10 h时,InGaAs/GaAsP结构的波长蓝移量达到70.5 nm,量子垒为GaAsP时比GaAs有更好的促进蓝移效果。相同外延结构下,InGaP牺牲层结构相比AlGaAs牺牲层有更大的波长蓝移。
量子阱混杂 半导体激光器 腔面光学灾变损伤 quantum well intermixing semiconductor laser diodes COMD 
中国光学
2022, 15(3): 426
王予晓 1,2朱凌妮 1,*仲莉 1,3,*祁琼 1[ ... ]马骁宇 1,3
作者单位
摘要
1 中国科学院半导体研究所 光电子器件国家工程中心,北京 100083
2 中国科学院大学 电子电气与通信工程学院,北京 100049
3 中国科学院大学 材料科学与光电技术学院,北京 100049
腔面光学灾变损伤是制约半导体激光器输出功率以及可靠性的主要因素之一。为制备高功率和高可靠性半导体器件,初步探索了Si杂质诱导量子阱混杂技术,并将其应用于975 nm半导体激光器件的非吸收窗口制备工艺。采用循环退火方式,研究了不同条件下Si杂质诱导量子阱混杂的效果,当退火温度为830 ℃,退火时间为10 min,循环次数为3次时,达到最大波长蓝移量59 nm。分别在800 ℃ 5次10 min和830 ℃ 3次10 min退火条件下制备了非吸收窗口。与普通器件相比,制备非吸收窗口的器件阈值电流增大,斜率效率下降,工作电流大于10 A后器件斜率效率降低,电流-工作电流曲线呈现饱和趋势。相较之下,800 ℃ 5次10 min条件下对应的器件性能相对较好。工作电流达到15 A后普通器件失效,而制备了非吸收窗口的器件则在电流大于20 A后仍可正常工作,腔面光学灾变损伤阈值提高了33.0%以上。
半导体激光器 量子阱混杂 非吸收窗口 腔面光学灾变损伤  退火 Semiconductor laser Quantum well intermixing Non-absorbing window Catastrophic optical mirror degradation Si Annealing 
光子学报
2022, 51(2): 0251210

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!