人工晶体学报, 2020, 49 (4): 684, 网络出版: 2020-06-15   

超小孔径树枝状介孔二氧化硅纳米球的制备和表征

Synthesis and Characterization of Dendritic Mesoporous Silica Nanospheres (DMSNs) with Extremely Tiny Pore Size
作者单位
1 延安大学化学与化工学院,陕西省化学反应工程重点实验室,延安 716000
2 中国科学院青海盐湖研究所分析测试中心,西宁 810008
摘要
采用短碳链的表面活性剂溴代十二烷基三甲基溴化铵为模板剂,合成了具有较大粒径和超小孔径分布的单分散树枝状介孔二氧化硅纳米球(记为DMSNs-C12)。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射能谱(XRD)、傅里叶变换红外光谱(FT-IR)、以及氮气吸附脱附曲线对制备的DMSNs-C12进行了形貌、晶体结构、化学组成、孔体积、比表面积等分析。结果表明:与传统的、以溴代十六烷基三甲基溴化铵为模板剂制备的单分散树枝状二氧化硅纳米球相比(DMSNs-C16),DMSNs-C12颗粒尺寸明显增大,褶皱结构消失,孔道尺寸急剧减小。原因是随着碳链减小,表面活性剂相互斥力减弱,影响微乳液形成,最终导致结构差异。
Abstract
Monodisperse dendritic mesoporous silica nanospheres (DMSNs) with enlarged diameter and extremely tiny pore size were synthesized by brominated dodecyl trimethyl ammonium bromide which is a relatively short carbon chain surfactant and acts as template agent. The as-prepared DMSNs-C12 were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourie tansform infrared spectroscopy (FT-IR), N2 adsorption-desorption isotherms to reveal its morphology, crystal texture, chemical compositions, pore volume and specific surface area. The results indicate that the particle size of DMSNs-C12 greatly increases, wrinkled structure disappears and the pore size significantly declines, compared with DMSNs fabricated with conventional cetlytrimethyl ammonium bromide as emplate agent (noted as DMSNs-C16). The reason could be that the mutual repulsive force of surfactants decreases with the reduction of carbon chain which affects microemulsion formation, giving rise to structural difference.
参考文献

[1] Li W, Liu J, Zhao D Y. Mesoporous materials for energy conversion and storage devices[J].Nature Reviews Materials,2016,1(6):16023.

[2] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359(6397):710-712.

[3] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J].Science,1998,279(5350):548-552.

[4] Polshettiwar V, Cha D, Zhang X X, et al. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology[J].Angewandte Chemie International Edition,2010,49(50):9652-9656.

[5] Wang Y B, Du X, Liu Z, et al. Dendritic fibrous nano-particles (DFNPs):rising stars of mesoporous materials[J].Journal of Materials Chemistry A,2019,7(10):5111-5152.

[6] Maity A, Polshettiwar V. Dendritic fibrous nanosilica for catalysis, energy harvesting, carbon dioxide mitigation, drug delivery, and sensing[J].Chem. Sus. Chem.,2017,10(20):3866-3913.

[7] Du X, Qiao S Z. Dendritic silica particles with center-radial pore channels:promising platforms for catalysis and biomedical applications[J].Small,2015,11(4):392-413.

[8] Singh R, Bapat R, Qin L J, et al. Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis:nanoparticle formation and size quantization effect[J].ACS Catalysis,2016,6(5):2770-2784.

[9] Singh B, Polshettiwar V. Design of CO2 sorbents using functionalized fibrous nanosilica (KCC-1):insights into the effect of the silica morphology (KCC-1 vs. MCM-41)[J].Journal of Materials Chemistry A,2016,4(18):7005-7019.

[10] Patil U, Fihri A, Emwas A-H, et al. Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO2 capture with excellent stability and regenerability[J].Chemical Science,2012,3(7):2224-2229.

[11] Deng X H, Rin R, Tseng J-C, et al. Monodispersed mesoporous silica spheres supported Co3O4 as robust catalyst for oxygen evolution reaction[J].Chem. Cat. Chem.,2017,9(22):4238-4243.

[12] Xu J, Zhang J Y, Peng H G, et al. Ag supported on meso-structured SiO2 with different morphologies for CO oxidation:on the inherent factors influencing the activity of Ag catalysts[J].Microporous and Mesoporous Materials,2017,242:90-98.

[13] Xuan X N, Tu S C, Yu H J, et al. Size-dependent selectivity and activity of CO2 photoreduction over black nano-titanias grown on dendritic porous silica particles[J].Applied Catalysis B:Environmental,2019,255:117768.

[14] Yamada H, Ujiie H, Urata C, et al. A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology[J].Nanoscale,2015,7(46):19557-19567.

[15] Bayal N, Singh B, Singh R, et al. Size and fiber density controlled synthesis of fibrous nanosilica spheres (KCC-1)[J].Scientific Reports,2016,6:24888.

[16] Moon D S, Lee J K. Tunable synthesis of hierarchical mesoporous silica nanoparticles with radial wrinkle structure[J].Langmuir. 2012,28(33):12341-12347.

[17] Lim S W, Jang H G, Sim H I, et al. Preparation of dandelion-type silica spheres and their application as catalyst supports[J].Journal of Porous Materials,2014,21(5):797-809.

[18] Xu C, Yu M, Noonan O, et al. Core-cone structured monodispersed mesoporous silica nanoparticles with ultra-large cavity for protein delivery[J].Small,2015,11(44):5949-5955.

[19] Sun Z B, Li H Z, Guo D, et al. A multifunctional magnetic core-shell fibrous silica sensing probe for highly sensitive detection and removal of Zn2+ from aqueous solution[J].Journal of Materials Chemistry C,2015,3(18):4713-4722.

[20] Yang H L, Li S W, Zhang X Y, et al. Imidazolium ionic liquid-modified fibrous silica microspheres loaded with gold nanoparticles and their enhanced catalytic activity and reusability for the reduction of 4-nitrophenol[J].Journal of Materials Chemistry A,2014,2(30):12060-12067.

[21] Sadeghzadeh S M. A heteropolyacid-based ionic liquid immobilized onto fibrous nano-silica as an efficient catalyst for the synthesis of cyclic carbonate from carbon dioxide and epoxides[J].Green Chemistry,2015,17(5):3059-3066.

[22] Qureshi Z S, Sarawade P B, Hussain I, et al. Gold nanoparticles supported on fibrous silica nanospheres (KCC-1) as efficient heterogeneous catalysts for CO oxidation[J].Chem. Cat. Chem.,2016,8(9):1671-1678.

[23] Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984)[J].Pure and Applied Chemistry,1985,57(4):603-619.

[24] Ryoo R. Birth of a class of nanomaterial, nature publishing group[J].Nature,2019,575:40-41.

[25] Febriyanti E, Suendo V, Mukti R R, et al. Further insight into the definite morphology and formation mechanism of mesoporous silica KCC-1[J].Langmuir,2016,32(23):5802-5811.

[26] Maity A, Das A, Sen D, et al. Unraveling the formation mechanism of dendritic fibrous nanosilica[J].Langmuir, 2017, 33(48):13774-13782.

[27] Cates M E, Andelman D, Safran S A, et al. Theory of microemulsions:comparison with experimental behavior[J].Langmuir,1988,4(4):802-806.

[28] Nagarajan R, Ruckenstein E. Molecular theory of microemulsions[J].Langmuir,2000,16(16):6400-6415.

韩玉, 瞿成良, 王亚斌, 丁秀萍, 张琰图. 超小孔径树枝状介孔二氧化硅纳米球的制备和表征[J]. 人工晶体学报, 2020, 49(4): 684. HAN Yu, QU Chengliang, WANG Yabin, DING Xiuping, ZHANG Yantu. Synthesis and Characterization of Dendritic Mesoporous Silica Nanospheres (DMSNs) with Extremely Tiny Pore Size[J]. Journal of Synthetic Crystals, 2020, 49(4): 684.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!