中国激光, 2017, 44 (3): 0310001, 网络出版: 2017-03-08   

基于SPR效应和缺陷耦合的光子晶体光纤高灵敏度磁场与温度传感器 下载: 734次

Photonic Crystal Fiber High Sensitivity Magnetic Field and Temperature Sensor Based on Surface Plasma Resonance Effect and Defect Coupling
作者单位
中国矿业大学信息与控制工程学院, 江苏 徐州 221116
摘要
设计了一种基于表面等离子体共振(SPR)效应以及缺陷耦合机理的新型光子晶体光纤传感器。该传感器结构中光子晶体光纤包层的一个特定空气孔内表层被镀上金属薄膜,通过改变另一空气孔直径以形成缺陷,并在这两个空气孔中填充磁流体材料。通过分析磁流体的折射率与温度、磁场的关系,实现了对温度和磁场的同时测量。实验结果表明,耦合谐振峰与SPR损耗峰在温度升高时均产生蓝移,磁场增强时均产生红移。耦合谐振峰与SPR损耗峰的温度灵敏度分别可达到-1.338 nm/℃和-1.575 nm/℃,磁场灵敏度分别为4.333 μm/T和2.816 μm/T。该传感器不仅具有高灵敏度,而且实现了磁场和温度的精确测量。
Abstract
A new photonic crystal fiber sensor based on surface plasma resonance (SPR) effect and defect coupling mechanism is proposed. Two air holes of photonic crystal fiber cladding in the sensor are filled with magnetic fluid material. One hole is coated with metallic thin film on inner layer,and the diameter of the other hole is changed to form defect. By analyzing the relationship among refractive index, temperature and magnetic field of magnetic fluid, the simultaneous measurement for temperature and magnetic field can be achieved. Results show that the coupling resonance peak and the SPR loss peak are blue shifted as temperature increasing and red shifted as magnetic field increasing. The temperature sensitivity of the coupling resonance peak and the SPR loss peak can reach -1.338 nm/℃ and -1.575 nm/℃ respectively, and the magnetic field sensitivity of them is 4.333 μm/T and 2.816 μm/T respectively. The proposed sensor not only has a high sensitivity, but also can achieve accurate measurement for magnetic field and temperature.
参考文献

[1] Hassani A, Skorobogatiy M. Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness[J]. Journal of the Optical Society of America B, 2009, 26(8): 1550-1557.

[2] Maier S A. Plasmonics: Fundamentals and applications[M]. New York: Springer, 2007.

[3] 阎守胜. 固体物理基础[M]. 北京: 北京大学出版社, 2011: 13-20.

    Yan Shousheng. Elements of solid state physics[M]. Beijing: Peking University Press, 2011: 13-20.

[4] Dressel M, Grüner G. Electrodynamic of solids: Optical properties of electrons in matter[M]. Cambridge: New York Cambridge University Press, 2002: 93-106.

[5] 崔丹宁. 新型双芯结构的光子晶体光纤传输特性研究[D]. 天津: 天津理工大学, 2014.

    Cui Danning. Analyse the transmission characteristics of novel dual-core photonic crystal fiber[D]. Tianjin: Tianjin University of Technology, 2014.

[6] Ju J, Wang Z, Jin W, et al. Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor[J]. IEEE Photonics Technology Letters, 2006, 18(20): 2168-2170.

[7] Shin W, Lee Y L, Yu B A, et al. Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber[J]. Optics Communications, 2010, 283(10): 2097-2101.

[8] Gao R, Jiang Y,Abdelaziz S. All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers[J]. Optics Letters, 2013, 38(9): 1539-1541.

[9] Dash J N, Jha R. Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1092-1095.

[10] Zhao Y, Deng Z Q, Li J. Photonic crystal fiber based surface plasmon resonance chemical sensors[J]. Sensors and Actuators B: Chemical, 2014, 202: 557-567.

[11] Fan Z K, Li S G, Liu Q, et al. High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance[J]. IEEE Photonics Journal, 2015, 7(3): 15194073.

[12] Wang G Y, Li S G, An G W, et al. Highly sensitive D-shaped photonic crystal fiber biological sensors based on surface plasmon resonance[J]. Optical and Quantum Electronics, 2016, 48(1): 1-9.

[13] Akowuah E K, Gorman T, Ademgil H, et al. A highly sensitive photonic crystal fibre (PCF) surface plasmon resonance (SPR) sensor based on a bimetallic structure of gold and silver[C]. IEEE ICAST, 2012: 121-125.

[14] 刘剑飞, 刘 帆, 曾祥烨, 等. 基于磁流体填充的光子晶体光纤传感特性研究[J]. 激光与光电子学进展, 2016, 53(7): 070601.

    Liu Jianfei, Liu Fan, Zeng Xiangye, et al. Sensing characteristics of photonic crystal fiber filled with magnetic fluid[J]. Laser & Optoelectronics Progress, 2016, 53(7):070601.

[15] 施伟华, 尤承杰. 基于定向耦合的光子晶体光纤高灵敏度磁场、温度传感器[J]. 光学学报, 2016, 36(7): 0706004.

    Shi Weihua,You Chengjie. Study on high sensitivity magnetic field and temperature sensor of photonic crystal fiber based on directional coupling[J]. Acta Optica Sinica, 2016, 36(7): 0706004.

[16] 李 鹏, 赵建林, 张晓娟, 等. 三角结构三芯光子晶体光纤中的模式耦合特性分析[J]. 物理学报, 2010, 59(12): 8625-8631.

    Li Peng, Zhao Jianlin, Zhang Xiaojuan, et al. Analysis of model coupling in photonic crystal fiber with triangular structure triple-core[J]. Acta Physica Sinica, 2010, 59(12): 8625-8631.

[17] Wu D K C, Lee K J,Pureur V, et al. Performance of refractive index sensors based on directional couplers in photonic crystal fibers[J]. Journal of Lightwave Technology, 2013, 31(22): 3500-3510.

[18] Hassani A, Skorobogatiy M. Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors[J]. Journal of the Optical Society of America B, 2007, 24(6): 1423-1429.

[19] Akowuah E K, Gorman T, Ademgil H, et al. Numerical analysis of a photonic crystal fiber for biosensing applications[J]. IEEE Journal of Quantum Electronics, 2012, 48(11): 1403-1410.

[20] 孙长军. 磁流体磁光特性的研究[D]. 汕头: 汕头大学, 2009.

    Sun Changjun. Investigation of the magnetic fluids magnetic-optical properties[D]. Shantou: Shantou University, 2009.

[21] Zhao Y, Wu D, Lü R Q, et al. Tunable characteristics and mechanism analysis of the magnetic fluid refractive index with applied magnetic field[J]. IEEE Transactions on Magnetics, 2014, 50(8): 4600205.

[22] Steel M J, Osgood R M. Elliptical-hole photonic crystal fibers[J]. Optics Letters, 2001, 26(4): 229-231.

[23] Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers[J]. IEEE Journal of Quantum Electronics, 2002, 38(7): 927-933.

朱晟昦, 谭策, 王琰, 高源, 董碧成, 马翰林, 刘海. 基于SPR效应和缺陷耦合的光子晶体光纤高灵敏度磁场与温度传感器[J]. 中国激光, 2017, 44(3): 0310001. Zhu Chenghao, Tan Ce, Wang Yan, Gao Yuan, Dong Bicheng, Ma Hanlin, Liu Hai. Photonic Crystal Fiber High Sensitivity Magnetic Field and Temperature Sensor Based on Surface Plasma Resonance Effect and Defect Coupling[J]. Chinese Journal of Lasers, 2017, 44(3): 0310001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!