Photonics Research, 2021, 9 (2): 02000222, Published Online: Jan. 29, 2021  

Interference at the single-photon level based on silica photonics robust against channel disturbance

Author Affiliations
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Division of Quantum Materials and Devices, Beijing Academy of Quantum Information Sciences, Beijing 100193, China
4 Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
Copy Citation Text

Xiao Li, Meizhen Ren, Jiashun Zhang, Liangliang Wang, Wei Chen, Yue Wang, Xiaojie Yin, Yuanda Wu, Junming An. Interference at the single-photon level based on silica photonics robust against channel disturbance[J]. Photonics Research, 2021, 9(2): 02000222.

References

[1] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 2002, 74: 145-195.

[2] C. H. Bennett, G. Brassard. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci., 2014, 560: 7-11.

[3] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin. Experimental quantum cryptography. J. Cryptol., 1992, 5: 3-28.

[4] J. Breguet, A. Muller, N. Gisin. Quantum cryptography with polarized photons in optical fibres. J. Mod. Opt., 1994, 41: 2405-2412.

[5] A. Muller, H. Zbinden, N. Gisin. Quantum cryptography over 23  km in installed under-lake telecom fibre. Europhys. Lett., 1996, 33: 335-340.

[6] P. D. Townsend, J. G. Rarity, P. R. Tapster. Single photon interference in 10  km long optical fibre interferometer. Electron. Lett., 1993, 29: 634-635.

[7] C. Gobby, Z. L. Yuan, A. J. Shields. Quantum key distribution over 122  km of standard telecom fiber. Appl. Phys. Lett., 2004, 84: 3762-3764.

[8] Z.-F. Han, X.-F. Mo, Y.-Z. Gui, G.-C. Guo. Stability of phase-modulated quantum key distribution systems. Appl. Phys. Lett., 2005, 86: 221103.

[9] H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, W. Tittel. Interferometry with Faraday mirrors for quantum cryptography. Electron. Lett., 1997, 33: 586-588.

[10] X.-F. Mo, B. Zhu, Z.-F. Han, Y.-Z. Gui, G.-C. Guo. Faraday–Michelson system for quantum cryptography. Opt. Lett., 2005, 30: 2632-2634.

[11] X.-T. Song, D. Wang, X.-M. Lu, D.-J. Huang, D. Jiang, L.-X. Li, X. Fang, Y.-B. Zhao, L.-J. Zhou. Phase-coding quantum-key-distribution system based on Sagnac–Mach-Zehnder interferometers. Phys. Rev. A, 2020, 101: 032319.

[12] S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, C. Hui, P.-L. Hao, G.-J. Fan-Yuan, C. Wang, L.-J. Zhang, J. Kuang, S.-F. Liu, Z. Zhou, Y.-G. Wang, G.-C. Guo, Z.-F. Han. Practical gigahertz quantum key distribution robust against channel disturbance. Opt. Lett., 2018, 43: 2030-2033.

[13] C. Agnesi, M. Avesani, L. Calderaro, A. Stanco, G. Foletto, M. Zahidy, A. Scriminich, F. Vedovato, G. Vallone, P. Villoresi. Simple quantum key distribution with qubit-based synchronization and a self-compensating polarization encoder. Optica, 2020, 7: 284-290.

[14] P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, M. G. Thompson. Chip-based quantum key distribution. Nat. Commun., 2017, 8: 13984.

[15] P. Sibson, J. E. Kennard, S. Stanisic, C. Erven, J. L. O’Brien, M. G. Thompson. Integrated silicon photonics for high-speed quantum key distribution. Optica, 2017, 4: 172-177.

[16] M. Ren, X. Li, J. Zhang, L. Wang, Y. Wang, Y. Wu, J. An. Single-photon interference using silica-based AMZI with phase modulation. Opt. Laser Technol., 2020, 122: 105837.

[17] D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, D. Englund. Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X, 2018, 8: 021009.

[18] J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, A. J. Shields. Stability of high bit rate quantum key distribution on installed fiber. Opt. Express, 2012, 20: 16339-16347.

[19] S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, Z.-F. Han. Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express, 2014, 22: 21739-21756.

[20] A. Tomita, K.-I. Yoshino, Y. Nambu, A. Tajima, A. Tanaka, S. Takahashi, W. Maeda, S. Miki, Z. Wang, M. Fujiwara, M. Sasaki. High speed quantum key distribution system. Optical Fiber Technology, 2010, 16: 55-62.

[21] Y.-Y. Ding, H. Chen, S. Wang, D.-Y. He, Z.-Q. Yin, W. Chen, Z. Zhou, G.-C. Guo, Z.-F. Han. Polarization variations in installed fibers and their influence on quantum key distribution systems. Opt. Express, 2017, 25: 27923-27936.

[22] Y. Nambu, K. I. Yoshino, A. Tomita. Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit. J. Mod. Opt., 2008, 55: 1953-1970.

Xiao Li, Meizhen Ren, Jiashun Zhang, Liangliang Wang, Wei Chen, Yue Wang, Xiaojie Yin, Yuanda Wu, Junming An. Interference at the single-photon level based on silica photonics robust against channel disturbance[J]. Photonics Research, 2021, 9(2): 02000222.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!