Photonics Research, 2021, 9 (2): 02000222, Published Online: Jan. 29, 2021  

Interference at the single-photon level based on silica photonics robust against channel disturbance

Author Affiliations
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Division of Quantum Materials and Devices, Beijing Academy of Quantum Information Sciences, Beijing 100193, China
4 Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei 230026, China
Figures & Tables

Fig. 1. Silica PLC device. (a) Schematic of our AMZI chip. (b) A photograph of the chip packaging. The device contacts the surface of the TEC platform and is covered with a heat-insulating shell when the operation is on.

下载图片 查看原文

Fig. 2. (a) Experimental setup to investigate the polarization characteristics of a 740 ps delay AMZI chip at the single-photon level. Att., variable optical attenuator; DC, direct current voltage drive; TEC, temperature controller. (b) Graph illustrating the pulse self-interfering method.

下载图片 查看原文

Fig. 3. (a) Interference fringes observed for 740 ps delay AMZI chip when device temperature is scanned from 10°C to 60°C. (b) The fitting curve of our proposed model by Eq. (8). The y axis represents normalized amplitude, y=(5.46×T+13)×(0.089×T1.29), where V=0 (volt).

下载图片 查看原文

Fig. 4. Experimental setup with minor variation on the one in Fig. 2(a). PBS, polarization beam splitter. Single-mode fiber (SMF) is in yellow; polarization maintaining fiber (PMF) is in blue.

下载图片 查看原文

Fig. 5. (a) Interference fringes versus device temperature, associated with the TE (red) and TM (blue) modes. The top black curve is the sum of the TE and TM modes. The minimum visibility occurs at 29.2°C, corresponding to Δϕ=(2N+1)π, while the maximum visibility occurs at 49°C, corresponding to Δϕ=2Nπ. (b) and (c) Interference fringes of the TE (red) and TM (blue) modes versus voltage square of TOPM2 at 29.2°C and 49°C, respectively. The fringes of both modes are in anti-phase at 29.2°C and in phase at 49°C, which agrees with the phase matching shown in (a).

下载图片 查看原文

Fig. 6. Interference fringes of the TE (red) and TM (blue) modes versus device temperature scanned from 10°C to 50°C; (a) and (b) correspond to 200 ps and 400 ps, respectively. The top black curve is the sum of the TE and TM modes.

下载图片 查看原文

Fig. 7. Interference fringes of the TE (red) and TM (blue) modes versus device temperature, scanned from 10°C to 60°C for Bob’s 740 ps delay AMZI chip. The top black curve is the sum of the TE and TM modes.

下载图片 查看原文

Fig. 8. Experimental setup to prove robustness against polarization disturbance of our interferometers based on silica 740 ps delay AMZI chips.

下载图片 查看原文

Fig. 9. Fringe visibility versus T ranging from 34°C to 39.6°C. The inset shows interference fringes over 20 km transmission, at the optimal T of 36.6°C.

下载图片 查看原文

Fig. 10. Proof of long-term stability of our setup. Plot of the extinction ratio between the two outputs from Bob against time over 6 h. The inset shows interference fringes of the two outputs of Bob’s AMZI chip.

下载图片 查看原文

Xiao Li, Meizhen Ren, Jiashun Zhang, Liangliang Wang, Wei Chen, Yue Wang, Xiaojie Yin, Yuanda Wu, Junming An. Interference at the single-photon level based on silica photonics robust against channel disturbance[J]. Photonics Research, 2021, 9(2): 02000222.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!