红外与毫米波学报, 2019, 38 (4): 04485, 网络出版: 2019-10-14  

基于DAST晶体的高能量超宽带可调谐小型化差频THz辐射源研究

High-energy, ultra-wideband tunable and compact terahertz source based on DAST crystal via difference frequency generation
作者单位
1 天津大学 精密仪器与光电子工程学院 激光与光电子研究所,天津 300072
2 天津大学 光电信息技术教育部重点实验室,天津 300072
3 中国电子科技集团公司第四十六研究所,天津 300220
4 第三军医大学西南医院神经外科,重庆 400038
引用该论文

贺奕焮, 庞子博, 朱先立, 徐德刚, 王与烨, 孟大磊, 武聪, 程虹娟, 徐永宽, 姚建铨. 基于DAST晶体的高能量超宽带可调谐小型化差频THz辐射源研究[J]. 红外与毫米波学报, 2019, 38(4): 04485.

HE Yi-Xin, PANG Zi-Bo, ZHU Xian-Li, XU De-Gang, Wang Yu-Ye, MENG Da-Lei, WU Cong, CHENG Hong-Juan, XU Yong-Kuan, YAO Jian-Quan. High-energy, ultra-wideband tunable and compact terahertz source based on DAST crystal via difference frequency generation[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04485.

参考文献

[1] Yang X, Zhao X, Yang K, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10):810-824.

[2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105.

[3] Siegel P H. Terahertz technology in biology and medicine[J]. Microwave Theory & Techniques IEEE Transactions on, 2004, 52(10):2438-2447.

[4] Sirtori C. Applied physics: bridge for the terahertz gap[J]. Nature, 2002, 417(6885):132-133.

[5] Davies A G, Burnett A D, Fan W, et al. Terahertz spectroscopy of explosives and drugs[J]. Materials Today, 2008, 11(3): 18-26D.

[6] Takida Y, Namata K J, Suzuki S, et al. Nonlinear optical detection of terahertz-wave radiation from resonant tunneling diodes[J]. Optics Express, 2017, 5(25):5389-5396.

[7] Yamashita M, Takahashi H, Ouchi T, et al. Ultra-broadband terahertz time-domain ellipsometric spectroscopy utilizing GaP and GaSe emitters and an epitaxial layer transferred photoconductive detector[J]. Applied Physics Letters, 2014, 104(05):1694-1696.

[8] Jooshesh A, Fesharaki F, Bahrami-Yekta V, et al. Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation[J]. Optics Express, 2017, 18(25):22140-22148.

[9] Carnio B N, Greig S R, Firby C J, et al. Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal[J]. Applied Physics Letters, 2016, 108(261109):1-4.

[10] Ding Y J. Progress in terahertz sources based on difference-frequency generation [Invited][J]. Journal of the Optical Society of America B, 2014, 31(11):2696-2711.

[11] Liu H, Bai W, Feng J, et al. The synthesis of large-diameter ZnTe crystal for THz emitting and detection [J]. Journal of Crystal Growth, 2017, 475:115-120.

[12] Naftaly M, Molloy J F, Magnusson B, et al. Silicon carbide-a high-transparency nonlinear material for THz applications.[J]. Optics Express, 2016, 24(3):2590-2595.

[13] Fischer M P, Bühler J, Fitzky G, et al. Coherent field transients below 15 THz from phase-matched difference frequency generation in 4H-SiC[J]. Optics Letters, 2017, 42(14):2687.

[14] Marder S R, Perry J W, Schaefer W P. Synthesis of organic salts with large second-order optical Nonlinearities[J]. Science, 1989, 245:626-628.

[15] Ruiz B, Jazbinsek M, and Günter P. Crystal growth of DAST[J]. Crystal Growth & Design, 2008, 8(11):4173-4184.

[16] Pan F, Knopfle G, Bosshard C, et al. Electro-optic properties of the organic salt 4-N,N-dimethylamino-4′-N′-methyl-stilbazoliumtosylate[J]. Applied Physics Letters, 1996, 1(69):13-15.

[17] Jazbinsek M, Mutter L, Gunter P. Photonic applications with the organic nonlinear optical crystal DAST[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(5):1298-1311.

[18] Takahashi Y, Adachi H, Taniuchi T. Organic nonlinear optical DAST crystals for electro-optic measurement and terahertz wave generation[J]. Journal of Photochemistry and Photobiology A: Chemistry. 2006, 183: 247-252.

[19] Cao L F, Teng B, Xu D G, et al. Growth, transmission, Raman spectrum and THz generation of DAST crystal, RSC Advances, 2016, 6(103),101389-101394.

[20] Yabuzaki J, Takahashi Y, Adachi H, et al. High-quality crystal growth and characterization of organic nonlinear optical crystal: 4-dimethylamino-N-methyl-4-stilbazoliumtosylate (DAST)[J]. Bulletin Materials Sciences, 1999, 1(22): 11-13.

[21] Hameed S, Yu C, Chen B. An investigation on the growth and characterization of DAST crystals grown by two zone growth technique[J]. Journal of Crystal Growth, 2005, 282:117-124.

[22] Adachi H, Takahashi Y, Yabuzaki J, et al. Growth of high quality nonlinear optical crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST)[J]. Crystal Growth & Design, 1999, 198(99):568-571.

[23] Hameed A, Rohani S, Yu W, et al. Surface defects and mechanical hardness of rapidly grown DAST crystals[J]. Journal of Crystal Growth, 2006, 97:146-151.

[24] Kawase K, Mizuno M, Sohma S, et al. Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser[J]. Optics Letters, 1999, 15(24):1065-1067.

[25] Kawase K, Hatanaka T, Takahashi H, et al. Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate[J]. Optics Letters, 2000, 23(25):1714-1716.

[26] Taniuchi T, Okada S, Nakanishi H. Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application[J]. Journal of Applied Physics, 2004, 11(95):5984-5988.

[27] Liu P X, Feng Q, Pang Z B, et al. Competition between two parametric processes in a pump source of terahertz-wave difference frequency generation[J]. Journal of Physics D: Applied Physics, 2018,51(39):1-5.

[28] Suizu K, Miyamoto K, Yamashita T, et al. High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter[J]. Optics Letters, 2007, 32(19):2885-2887.

[29] Tang M, Minamide H, Wang Y, et al. Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser[J]. Optics Express, 2011, 2(19): 779-786.

[30] Nawata K, Abe T, Miyake Y, et al. Efficient terahertz wave generation using a 4-Dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser[J]. Applied Physics Express, 2012, 5(112401):1-3.

[31] Dolasinski B, Powers P E, Haus J W, et al. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN[J]. Optics Express, 2015, 3(23):3669-3680.

[32] Tokizane Y, Nawata K, Han Z, et al. Tunable terahertz waves from 4-dimethylamino-N-methyl-4-stibazolium tosylate pumped with dual-wavelength injection-seeded optical parametric generation[J]. Applied Physics Express, 2017, 10(022101):1-4.

[33] He Y X, Wang Y Y, Xu D G, et al. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation[J]. Applied Physics B, 2018, 124(1):16-23.

[34] Cunningham P D, Hayden L M. Optical properties of DAST in the THz range[J]. Optics Express, 2010, 18(23): 23620-23625.

贺奕焮, 庞子博, 朱先立, 徐德刚, 王与烨, 孟大磊, 武聪, 程虹娟, 徐永宽, 姚建铨. 基于DAST晶体的高能量超宽带可调谐小型化差频THz辐射源研究[J]. 红外与毫米波学报, 2019, 38(4): 04485. HE Yi-Xin, PANG Zi-Bo, ZHU Xian-Li, XU De-Gang, Wang Yu-Ye, MENG Da-Lei, WU Cong, CHENG Hong-Juan, XU Yong-Kuan, YAO Jian-Quan. High-energy, ultra-wideband tunable and compact terahertz source based on DAST crystal via difference frequency generation[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04485.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!