中国激光, 2016, 43 (1): 0116003, 网络出版: 2015-12-31   

射流水波导表面轮廓特性对传输损耗的影响

Influence of Water-Jet Waveguide with Turbulent Surface on the Optical Transmission Losses
邱禹力 1,2,*朱广志 1,2朱晓 1,2陈永骞 1,2朱琛 1,2
作者单位
1 华中科技大学光学与电子信息学院, 湖北 武汉 430074
2 华中科技大学激光加工国家工程研究中心, 湖北 武汉 430074
摘要
基于流体理论分析不同区段的射流界面特征,利用高速数码相机拍摄射流水波导的气液交界面形态,选择恰当的图像处理算法提取并重构射流界面轮廓,根据重构的三维光学模型进行光线追迹仿真,最终获得射流波动段的损耗特性。结果表明,射流界面的波动振幅和频率将直接影响光线在其内部的全内反射传输。处于波动开始阶段的射流,由于波动幅度和频率相对较小,不能引起传输损耗。当射流界面波动达到一定程度时,其损耗特性开始逐渐显现,从而影响微细水射流作为介质波导的传输能力。
Abstract
Shapes of a water- jet in different regimes are analyzed on the basis of fluid theory. High speed photography is used to record the turbulence of the water-air interface. The water-jet contours are detected and reconstructed by using digital image processing algorithms. The ray tracing method is employed to investigate the optical losses produced by the surface perturbation. The results show that the amplitude and frequency of turbulence have a great impact on light propagation under the effect of total internal reflection. At the stage of incipient turbulence, no optical losses is caused since the wave amplitude and frequency are the relatively small. But when the amplitude and frequency of turbulence exceed certain threshold values, the power losses tend to increase so that it weakens the ability to guide light of water-jet in this kind of situation.
参考文献

[1] 蔡志祥, 高勋银, 杨伟, 等. 光纤激光切割蓝宝石基片的工艺研究[J]. 激光与光电子学进展, 2015, 52(8): 081403.

    Cai Zhixiang, Gao Xunyin, Yang Wei, et al.. Study on fiber laser cutting of sapphire substrate[J]. Laser & Optoelectronics Progress, 2015,52(8): 081403.

[2] 陈聪, 高明, 顾云泽, 等. 光纤激光切割铝合金薄板工艺特性研究[J]. 中国激光, 2014,41(6): 0603004.

    Chen Cong, Gao Ming, Gu Yunze, et al.. Study on fiber laser cutting of aluminum alloy sheet[J]. Chinese J Lasers, 2014,41(6): 0603004.

[3] Pauchard A. Precise thin metal cutting using the laser microjet[C]. The LEF Conf Furth, 2009.

[4] Li C F, Johnson D B, Kovacevic R. Modeling of waterjet guided laser grooving of silicon[J]. Int J Mach Tool Manu, 2003, 43(9): 925-936.

[5] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 2006, 442(7101):381-386.

[6] Persichetti G, Testa G, Bernini R. Optofluidic jet waveguide enhanced Raman spectroscopy[J]. Sens Actuators B Chem, 2015, 207: 732-739.

[7] 梁忠诚, 赵瑞. 微流控光学及其应用[J]. 激光与光电子学进展, 2008, 45(6): 16-23.

    Liang Zhongcheng, Zhao Rui. Optofluidics and its potential applications[J]. Laser & Optoelectronics Progress, 2008, 45(6): 16-23.

[8] Eggers J, Villermaux E. Physics of liquid jets[J]. Rep Prog Phys, 2008, 71(3): 036601.

[9] Vágó N, Spiegel A, Couty P, et al.. New technique for high-speed microjet breakup analysis[J]. Exp Fluids, 2003, 35(4): 303-309.

[10] Couty P, Spiegel á, Vágó N, et al.. Laser-induced break-up of water jet waveguide[J]. Exp Fluids, 2004, 36(6): 919-927.

[11] 卢希钊, 江开勇, 姜峰, 等. 微射流水导改善加工激光能量分布[J]. 应用激光, 2015, 35(2): 230-235.

    Lu Xizhao, Jiang Kaiyong, Jiang Feng, et al.. Laser micro-jet enhanced processing laser energy distribution[J]. Applied Laser, 2015, 35(2): 230-235.

[12] 詹才娟, 李昌烽, 潘永琛, 等. 微水射流导引激光精密打孔过程的流动分析[J]. 力学季刊, 2011, 32(2): 159-165.

    Zhan Caijuan, Li Changfeng, Pan Yongchen, et al.. Analysis of fluid flow in micro-water jet guided laser precision drilling process[J].Chinese Quarterly of Mechanics, 2011, 32(2): 159-165.

[13] Spiegel á, Vágó N, Wagner F R. High efficiency Raman scattering in micrometer-sized water jets[J]. Opt Eng, 2004, 43(2): 450-454.

[14] Couty P, Wagner F, Hoffmann P. Laser coupling with a multimode water-jet waveguide[J]. Opt Eng, 2005, 44(6): 068001.

[15] Lin S P, Reitz R D. Drop and spray formation from a liquid jet[J]. Annu Rev Fluid Mech, 1998, 30(1): 85-105.

[16] Sterling A M, Sleicher C A. The instability of capillary jets[J]. J Fluid Mech, 1975, 68(03): 477-495.

[17] Gardner W B. Microbending loss in optical fibers[J]. Bell System Technical Journal, 1975, 54(2): 457-465.

[18] 冈萨雷斯, 伍兹, 埃丁斯, 等. 数字图像处理: MATLAB 版[M]. 阮秋琦译.北京: 电子工业出版社, 2005: 289-296.

    Gonzalez R C, Woods R E, Eddins S L, et al.. Digital Image Processing Using MATLAB[M]. Ruan Qiuqi Transl.. Beijing: Publishing House of Electronics Industry, 2005: 289-296.

[19] Hoeve W, Gekle S, Snoeijer J H, et al.. Breakup of diminutive Rayleigh jets[J]. Phys Fluids, 2010, 22(12): 122003.

[20] Durana G, Zubia J, Arrue J, et al.. Dependence of bending losses on cladding thickness in plastic optical fibers[J]. Appl Opt, 2003, 42(6): 997-1002.

[21] 林广森. 水导激光加工关键技术的研究[D]. 武汉: 华中科技大学, 2014: 47-48.

    Lin Guangsen. Study on the Key Technology of Water-Jet Guided Laser Machining[D]. Wuhan: Huazhong University of Science and Technology, 2014: 47-48.

[22] 罗银川, 芈绍桂, 张蓉竹. 不同喷嘴结构斜冲击射流流场数值仿真分析[J]. 光学学报, 2015, 35(s1): s122003.

    Luo Yinchuan, Mi Shaogui, Zhang Rongzhu. Numerical simulation analysis of oblique impinging jet flow field of different nozzle structure[J]. Acta Optica Sinica, 2015, 35(s1): s122003.

[23] 李灵. 水导激光微细加工技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2008: 40-43.

    Li Ling. Study on Water-Jet Guided Laser Micromachining Technology[D]. Harbin: Harbin Institute of Technology, 2008: 40-43.

邱禹力, 朱广志, 朱晓, 陈永骞, 朱琛. 射流水波导表面轮廓特性对传输损耗的影响[J]. 中国激光, 2016, 43(1): 0116003. Qiu Yuli, Zhu Guangzhi, Zhu Xiao, Chen Yongqian, Zhu Chen. Influence of Water-Jet Waveguide with Turbulent Surface on the Optical Transmission Losses[J]. Chinese Journal of Lasers, 2016, 43(1): 0116003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!