光学学报, 2020, 40 (20): 2005001, 网络出版: 2020-09-30   

制造误差对大尺度超振荡平面透镜聚焦性能的影响 下载: 1296次封面文章

Effect of Manufacturing Errors on Focusing Performance of Large-Scale Super-Oscillatory Lens
作者单位
西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
引用该论文

何韬, 刘涛, 刘康, 李国卿, 王佳怡, 田博, 杨树明. 制造误差对大尺度超振荡平面透镜聚焦性能的影响[J]. 光学学报, 2020, 40(20): 2005001.

Tao He, Tao Liu, Kang Liu, Guoqing Li, Jiayi Wang, Bo Tian, Shuming Yang. Effect of Manufacturing Errors on Focusing Performance of Large-Scale Super-Oscillatory Lens[J]. Acta Optica Sinica, 2020, 40(20): 2005001.

参考文献

[1] Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432-435.

[2] Yuan G H, Rogers E T, Zheludev N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light: Science & Applications, 2017, 6(9): e17036.

[3] Li M Y, Li W L, Li H Y, et al. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci[J]. Scientific Reports, 2017, 7: 1335.

[4] Diao J S, Yuan W Z, Yu Y T, et al. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles[J]. Optics Express, 2016, 24(3): 1924-1933.

[5] Yu A P, Chen G, Zhang Z H, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports, 2016, 6: 38859.

[6] Chen G, Wu Z X, Yu A P, et al. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Scientific Reports, 2017, 7: 4697.

[7] Yuan G H. Rogers E T F, Roy T, et al. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Scientific Reports, 2015, 4: 6333.

[8] 武志翔, 金启见, 张坤, 等. 基于二值振幅调控的角向偏振光超振荡聚焦平面透镜[J]. 光电工程, 2018, 45(4): 170660.

    Wu Z X, Jin Q J, Zhang K, et al. Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave[J]. Opto-Electronic Engineering, 2018, 45(4): 170660.

[9] Chen G, Li Y Y, Yu A P, et al. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation[J]. Scientific Reports, 2016, 6: 29068.

[10] Wu J, Wu Z X, He Y H, et al. Creating a nondiffracting beam with sub-diffraction size by a phase spatial light modulator[J]. Optics Express, 2017, 25(6): 6274-6282.

[11] Li W L, Yu Y T, Yuan W Z. Flexible focusing pattern realization of centimeter-scale planar super-oscillatory lenses in parallel fabrication[J]. Nanoscale, 2019, 11(1): 311-320.

[12] Li W L, He P, Yuan W Z, et al. Efficiency-enhanced and sidelobe-suppressed super-oscillatory lenses for sub-diffraction-limit fluorescence imaging with ultralong working distance[J]. Nanoscale, 2020, 12(13): 7063-7071.

[13] Liu T, Tan J B, Liu J, et al. Vectorial design of super-oscillatory lens[J]. Optics Express, 2013, 21(13): 15090-15101.

[14] Liu T, Wang T, Yang S M, et al. Rigorous electromagnetic test of super-oscillatory lens[J]. Optics Express, 2015, 23(25): 32139-32148.

[15] Liu T, Yang S M, Jiang Z D. Electromagnetic exploration of far-field super-focusing nanostructured metasurfaces[J]. Optics Express, 2016, 24(15): 16297-16308.

[16] 刘涛. 矢量衍射远场超分辨聚焦相关理论及共焦显微成像研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 68- 74.

    LiuT. Research on vectorial diffraction far-field super-resolution focusing related theory and confocal microscopic imaging[D]. Harbin: Harbin Institute of Technology, 2014: 68- 74.

[17] Huang K, Liu H. Garcia-Vidal F J, et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 2015, 6: 7059.

[18] Ni H B, Yuan G H, Sun L D, et al. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography[J]. RSC Advances, 2018, 8(36): 20117-20123.

[19] Qin F, Huang K, Wu J F, et al. Asupercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Advanced Materials, 2017, 29(8): 1602721.

[20] Yu Y T, Li W L, Li H Y, et al. An investigation of influencing factors on practical sub-diffraction-limit focusing of planar super-oscillation lenses[J]. Nanomaterials, 2018, 8(4): 185.

[21] 阮德圣. 基于超振荡技术的太赫兹超衍射聚焦平面透镜研究[D]. 重庆: 重庆大学, 2018: 46- 50.

    Ruan DS. Study on terahertz sub-diffraction focusing planar lens based on optical super-oscillation[D]. Chongqin: Chongqing university, 2018: 46- 50.

[22] 蔡颖岚, 邓学文, 唐代飞, 等. 亚微米光栅曝光系统的应用及设备关键技术研究[J]. 电子工业专用设备, 2019, 48(1): 33-36, 59.

    Cai Y L, Deng X W, Tang D F, et al. Application and key technology research of sub-micron grating exposure system[J]. Equipment for Electronic Products Marufacturing, 2019, 48(1): 33-36, 59.

[23] 刘涛, 杨树明, 蒋庄德. 微结构金属膜环带片电磁聚焦优化设计方法[J]. 计量学报, 2016( 4): 337- 341.

    LiuT, Yang SM, Jiang ZD. Optimization design method for electromagnetic focusing micro-structured metallic-film multi-annular plates[J]. Acta Metrologica Sinica, 2016( 4): 337- 341.

[24] 安超, 褚金奎, 张然. 基于遗传算法的双层亚波长金属光栅优化[J]. 激光与光电子学进展, 2019, 56(22): 220501.

    An C, Chu J K, Zhang R. Optimization of bilayer sub-wavelength metallic grating based on genetic algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(22): 220501.

何韬, 刘涛, 刘康, 李国卿, 王佳怡, 田博, 杨树明. 制造误差对大尺度超振荡平面透镜聚焦性能的影响[J]. 光学学报, 2020, 40(20): 2005001. Tao He, Tao Liu, Kang Liu, Guoqing Li, Jiayi Wang, Bo Tian, Shuming Yang. Effect of Manufacturing Errors on Focusing Performance of Large-Scale Super-Oscillatory Lens[J]. Acta Optica Sinica, 2020, 40(20): 2005001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!