红外与激光工程, 2019, 48 (7): 0718003, 网络出版: 2019-08-07   

offner型连续变焦中波红外光谱成像系统设计

Design of continuous zoom medium-wave infrared spectral imaging system based on offner scheme
作者单位
长春理工大学 光电工程学院 光电测控与光信息传输技术教育部重点实验室, 吉林 长春 130022
摘要
为了适应不同视场光谱仪的应用需求, 设计了一款offner型连续变焦中波红外光谱成像系统。该系统引入前置变焦系统实现60~300 mm范围连续变焦, 同时采用光栅型offner 同心结构进行光谱分光及成像, 系统工作波段为3~5 μm, 选用制冷型红外探测器, 系统F#=4.0。根据物像交换原则及光焦度分配原则对前置变焦系统和中继系统的初始结构进行了计算, 并应用zemax软件对各子系统进行优化, 使其满足设计参数要求。最终offner型连续变焦中波红外光谱成像系统的调制传递函数在空间频率33 lp/mm处接近衍射极限, 点列斑均方根半径均小于一个像元大小, 设计的结果显示系统结构简单, 在各个焦距位置及各谱段下, 像质均满足了设计指标要求, 成像质量良好。
Abstract
In order to adapt to the application requirements of different field of view spectrometers, a continuous zoom medium-wave infrared spectrum imaging system based on offner scheme was designed. The front zoom system to achieve continuous zoom in the range of 60-300 mm was introduced in the system, and a grating-type offner concentric structure was used for spectral splitting and imaging. The working band was 3-5 μm, the cooled medium-wave infrared detector was used, the F#=4.0 in this system. According to the object image exchange principle and the power distribution principle, the initial structure of the front zoom system and the relay system were calculated, and the zemax software was used to optimize each subsystem to meet the design parameters. The modulation transfer function of the final continuous zoom medium-wave infrared spectrum imaging system based on offner scheme was close to the diffraction limit at a spatial frequency of 33 lp/mm, and the root mean square radius of the spot was smaller than one pixel. The design results show that the system structure is simple, and the image quality is good and meets the design indicator requirements at each focal length position and each spectral segment.
参考文献

[1] 周昊, 刘英, 孙强. 25倍中红外连续变焦光学系统设计[J]. 光学学报, 2012, 32(4): 0422001.

    Zhou Hao, Liu Ying, Sun Qiang. Mid-infrared zoom optical system with ration of 25[J]. Acta Optica Sinica, 2012, 32(4): 0422001. (in Chinese)

[2] 刘峰, 徐熙平, 孙向阳,等. 折/衍射混合红外目标搜索/跟踪光学系统设计[J]. 光学学报, 2010, 30(7): 2084-2088.

    Liu Feng, Xu Xiping, Sun Xiangyang, et al. Design of infrared(IR) Hybrid refractive/diffractive lenses for target detecting/tracking[J]. Acta Optica Sinica, 2010, 30(7): 2084-2088. (in Chinese)

[3] 高光谱, 多光谱及超光谱[DB/OL]. (2013-02-06)[2018-11-12]https://wenku.baidu.com/view/50f099f6f61fb7360

    b4c653e.html.

[4] 陈吕吉, 李萍, 马琳. 紧凑中波红外连续变焦光学系统设计[J]. 红外技术, 2010, 32(10): 562-566.

    Chen Lvji, Li Ping, Ma Lin. Compact MWIR zoom system[J]. Infrared Technology, 2010, 32(10): 562-566. (in Chinese)

[5] 巩盾, 王红. 空间高光谱成像仪的光学设计[J]. 红外与激光工程, 2014, 43(2): 541-545.

    Gong Dun, Wang Hong. Optical design of hyperspectral imaging spectrometer on space[J]. Infrared and Laser Engineering, 2014, 43(2): 541-545. (in Chinese)

[6] 胡际先. 长焦距大口径连续变焦光学系统的设计[J]. 应用光学, 2007, 28(5): 569-577.

    Hu Jixian. Design of long focal length large-aperture optical zoom system[J]. Applied Optics, 2007, 28(5):569-577. (in Chinese)

[7] Kong H J, Jin C, Lee J U, et al. Zoom lens design for a novel imaging spectrometer that controls spatial and spectral resolution individually[J]. Appl Opt, 2006, 45(15): 3430-3441.

[8] 郁道银, 谈恒英. 工程光学[M]. 第3版. 北京: 机械工业出版社, 2011.

    Yu Daoyin, Tan Hengying. Engineering Optics[M]. 3rd ed. Beijing: China Machine Press, 2011. (in Chinese)

[9] 于春玲. 变焦距光学系统设计[D]. 南京: 南京理工大学, 2013.

    Yu Chunling. Research on design of zoom lens[D]. Nanjing: Nanjing University of Science and Technology, 2013. (in Chinese)

[10] Mouroulis P, Thomas D A, Chrien T G, et al. Trade studies in multi/hyperspectral imaging systems final report[R]. USA: Nasa Earth Science Technology Office, 1998.

[11] 黄元申, 陈南曙, 张大伟, 等. 一种凸面光栅Offner结构成像光谱仪的设计方法[J]. 仪器仪表学报, 2008, 29(6):1236-1239.

    Huang Yuanshen, Chen Nanshu, Zhang Dawei, et al. Design method for Offner imaging spectrometer composed of convex grating[J]. Chinese Journal of Scientific Instrument, 2008, 29(6): 1236-1239. (in Chinese)

[12] 刘玉娟, 崔继承, 巴音贺希格,等. 凸面光栅成像光谱仪的研制与应用[J]. 光学 精密工程, 2012, 20(1): 52-57.

    Liu Yujuan, Cui Jicheng, Ba Yinhexige, et al. Design and application of imaging spectrometer with convex grating[J]. Optics and Precision Engineering, 2012, 20(1): 52-57. (in Chinese)

[13] 杨晋. 光谱成像仪同心光学系统设计与优化研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2012.

    Yang Jin. The study on optical design and optimization of concentric imaging spectrometers[D]. Changchun: Graduate University of Chinese Academy of Sciences(Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics), 2012. (in Chinese)

[14] Fisher J, Welch W C. Survey and analysis of fore-optics for hyperspectral imaging systems[C]// Proceedings of SPIE-The International Society for Optical Engineering, 2006, 6206: 62062R.

[15] 张月, 张琢, 苏云, 等. 宽谱段高分辨率低温成像光谱仪制冷系统设计[J]. 红外与激光工程, 2016, 45(3): 0323001.

    Zhang Yue, Zhang Zhuo, Su Yun, et al. Cooling system design for cryogenic imaging spectrometer with wide spectrum and high resolution[J]. Infrared and Laser Engineering, 2016, 45(3): 0323001. (in Chinese)

刘智颖, 高柳絮, 黄蕴涵. offner型连续变焦中波红外光谱成像系统设计[J]. 红外与激光工程, 2019, 48(7): 0718003. Liu Zhiying, Gao Liuxu, Huang Yunhan. Design of continuous zoom medium-wave infrared spectral imaging system based on offner scheme[J]. Infrared and Laser Engineering, 2019, 48(7): 0718003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!