光学学报, 2014, 34 (11): 1102001, 网络出版: 2014-10-13   

Na+对尖晶石结构Co(1-x)NaxCr2O4电子结构及光学性质的影响 下载: 603次

Effect of Na+ on Electronic Structure and Optical Properties of Spinel Structure Co(1-x)NaxCr2O4
作者单位
1 西安理工大学材料科学与工程学院, 陕西 西安 710048
2 宝鸡文理学院物理与信息技术系, 陕西 宝鸡 721016
3 西北工业大学理学院, 陕西 西安 710072
摘要
采用基于密度泛函理论的平面波超软赝势法,系统研究了Na+四面体掺杂Co(1-x)NaxCr2O4体系的基态结构参数、能带结构、电子态密度、磁矩和光学性质。当Na+掺杂离子数分数x为0.125时, 计算结果表明Na+四面体掺杂(Co位)比八面体掺杂(Cr位)容易进行。对Na+四面体掺杂体系Co(1-x)NaxCr2O4,计算发现,随着Na+掺杂离子数分数增加,体系的晶格参数逐渐增大,晶胞的磁矩和禁带宽度均减小。同时,费米能级进入价带部分更深。此外,光学性质的结果显示Na+可以使CoCr2O4的吸收光谱发生红移,并在低能区有很强的吸收,表明Na+能极大地提高CoCr2O4对可见光的吸收和光催化效率。
Abstract
By using the plane-wave ultrasoft pseudopotential method within the generalized gradient approximation, the structure parameters, band structure, electronic density of states, magnetic moment, and optical properties of Na+ doped tetrahedral Co(1-x)NaxCr2O4 system are fully investigated. The results indicate that Na+ is easier to enter tetrahedral sites (Co) in comparison with octahedral sites (Cr) with ion doping fraction of 0.125 for Na+. With the increase of ion doping fraction of Na+ in Co(1-x)NaxCr2O4 system, the lattice parameters become larger as in the usual case, on the contrary, the magnetic moment and band gap become smaller. Meanwhile, the Fermi level moves deeper into the valence band region. In addition, the absorption spectra of Co(1-x)NaxCr2O4 shift to red in the low energy region, and a strong absorption in the low energy region is obtained. This indicates that the doping Na+ can substantially improve the absorption of visible light and enhance catalytic efficiency of CoCr2O4.
参考文献

[1] K E Sickafus, J M Wills, N W Grimes. Structure of spinel [J]. J Am Ceram Soc, 1999, 82(12): 3279-3292.

[2] Y Suzuki, R B Van Dover, E M Gyorgy, et al.. Structure and magnetic properties of epitaxial spinel ferrite thin films [J]. Appl Phys Lett, 1996, 68(5): 714-716.

[3] T Arima, Y Yamasaki, T Goto, et al.. Spin-lattice coupling in ferroelectric spiral magnets: comparison between the cases of (Tb, Dy) MnO3 and CoCr2O4 [J]. J Phys Soc Jpn, 2007, 76(2): 023602.

[4] I Kim, Y S Oh, Y Liu, et al.. Electric polarization enhancement in multiferroic CoCr2O4 crystals with Cr-site mixing [J]. Appl Phys Lett, 2009, 94(4): 042505.

[5] Y J Choi, J Okamoto, D J Huang, et al.. Thermally or magnetically induced polarization reversal in the multiferroic CoCr2O4 [J]. Phys Rev Lett, 2009, 102(6): 067601.

[6] N Mufti, A A Nugroho, G R Blake, et al.. Magnetodielectric coupling in frustrated spin systems: the spinels MCr2O4 (M=Mn, Co and Ni) [J]. J Phys: Condensed Matter, 2010, 22(7): 075902.

[7] K Singh, A Maignan, C Simon, et al.. FeCr2O4 and CoCr2O4 spinels: multiferroicity in the collinear magnetic state [J]. Appl Phys Lett, 2011, 99(17): 172903.

[8] V I Torgashev, A S Prokhorov, G A Komandin, et al.. Magnetic and dielectric response of cobalt-chromium spinel CoCr2O4 in the terahertz frequency range [J]. Phys Solid State, 2012, 54(2): 350-359.

[9] S Kitani, M Tachibana, N Taira, et al.. Thermal study of the interplay between spin and lattice in CoCr2O4 and CdCr2O4 [J]. Phys Rev B, 2013, 87(6): 064402.

[10] R Padam, D Pal, S Ravi, et al.. Structural and magnetic properties of Co (Cr1-yAly)2O4 (y=0.0~0.2) compounds [J]. Journal of Superconductivity and Novel Magnetism, 2013, 26(5): 1607-1610.

[11] R Masrour, A Elegrini, M Hamedoun, et al.. Study of magnetic properties in spinels CoxZn1-xCr2O4 systems [J]. Journal of Superconductivity and Novel Magnetism, 2012, 25(4): 1093-1096.

[12] D Kamenskyi, H Engelkamp, T Fischer, et al.. Observation of an intersublattice exchange magnon in CoCr2O4 and analysis of magnetic ordering [J]. Phys Rev B, 2013, 87(13): 134423.

[13] S Tiwari, D Sa. A phenomenological Landau theory for electromagnons in cubic spinel multiferroic CoCr2O4 [J]. J Phys: Condensed Matter, 2010, 22(22): 225903.

[14] Chen Jinhua, Shi Wenbo, Zhang Xueying, et al.. Roles of Li+ and Zr4+ cations in the catalytic performances of Co1-xMxCr2O4 (M=Li,Zr; x=0~0.2) for methane combustion [J]. Environ Sci Technol, 2011, 45(19): 8491-8497.

[15] A F Shojaei, A R Tabari, M H Loghmani. Normal spinel CoCr2O4 and CoCr2O4/TiO2 nanocomposite as novel photocatalysts, for degradation of dyes [J]. Micro & Nano Letters, 2013, 8(8): 426-431.

[16] 薛丽梅, 许普查, 李哲. 尖晶石纳米粉体的微晶结构与吸光特性[J]. 黑龙江科技学院学报, 2010, 20(1): 10-13.

    Xue Limei, Xu Pucha, Li Zhe. Microcosmic crystalloid structure and absorbency of spinel nano-particles [J]. Journal of Heilongjiang Institute of Science and Technology, 2010, 20(1): 10-13.

[17] 薛丽梅, 陈彬, 张风华. Na+掺杂CoCr2O4尖晶石制备及其光催化性能[J]. 黑龙江科技学院学报, 2012, 22(3): 256-258.

    Xue Limei, Chen Bin, Zhang Fenghua. Prepared and photocatalytic properties of Na-doped CoCr2O4 spinel [J]. Journal of Heilongjiang Institute of Science & Technology, 2012, 22(3): 256-258.

[18] Hu Dongsheng, Han Aijun, Ye Mingquan, et al.. Preparation and spectroscopy analysis of spinel CoCr2-xAlxO4 by low-temperature combustion synthesis [J]. J Inorg Mater, 2011, 26(3): 285-289.

[19] Yang Lijuan, Gu Fang, Zhang Jiahong, et al.. First-principles study of the electronic structures and optical properties of Ba0.5Ca0.5ArO3 [J]. Journal of Atomic and Molecular Physics, 2013, 30(2): 275-280.

[20] 张富春, 张志勇, 张威虎, 等. AZO(ZnOAI)电子结构与光学性质的第一性原理计算[J]. 光学学报, 2009, 29(4): 1025-1031.

    Zhang Fuchun, Zhang Zhiyong, Zhang Weihul, et al.. First-principles calculation of electronic structure and optical properties of AZO(ZnOAI) [J]. Acta Optica Sinica, 2009, 29(4): 1025-1031.

[21] 蔡建秋, 陶向明, 罗海军, 等. Sr2RuO4各向异性光学性质的第一性原理研究[J]. 光学学报, 2010, 30(12): 3580-3585.

    Cai Jianqiu, Tao Xiangming, Luo Haijun, et al.. Ab-initio investigation of anisotropic optical properties of Sr2RuO4 [J]. Acta Optica Sinica, 2010, 30(12): 3580-3585.

[22] 陈茜, 谢泉, 杨创华, 等. 掺杂Mg2Si电子结构及光学性质的第一性原理计算[J]. 光学学报, 2009, 29(1): 229-235.

    Chen Qian, Xie Quan, Yang Chuanghua, et al.. Frist-principles calculation of electronic of Mg2Si with doping [J]. Acta Optica Sinica, 2009, 29(1): 229-235.

[23] 周士芸, 谢泉, 闫万珺, 等. 锰掺杂二硅化铬电子结构和光学性质的第一性原理计算[J]. 光学学报, 2009, 29(10): 2848-2853.

    Zhou Shiyun, Xie Quan, Yan Wanjun, et al.. First-principlees calculation of electronic structure and optical properties of CrSi2 with doping Mn [J]. Acta Optica Sinica, 2009, 29(10): 2848-2853.

[24] 闫万珺, 张忠政, 郭笑天, 等. 第一性原理计算V-Al共掺杂CrSi2的光电特性[J]. 光学学报, 2014, 34(4): 0416002.

    Yan Wanjun, Zhang Zhongzheng, Guo Xiaotian, et al.. First principles calculation on the photoslectric properties of V-Al co-doped CrSi2 [J]. Acta Optica Sinica, 2014, 34(4): 0416002.

[25] 黄昆, 韩汝琦. 固体物理学[M]. 北京: 高等教育出版社, 1988. 442-447.

    Huang Kun, Han Ruqi. Solid-State Physics [M]. Beijing: Higher Education Press, 1988. 442-447.

[26] 田芸, 冯庆, 丁守兵, 等. 非金属杂质C, N, S共掺金红石相TiO2引起的光谱红移效应[J]. 光学学报, 2013, 33(8): 0816004.

    Tian Yun, Feng Qing, Din Shoubing, et al.. Effect of red shift in rutile TiO2 caused by nonmetallic impurity C, N, S Co-doping [J]. Acta Optica Sinica, 2013, 33(8): 0816004.

[27] 闫万珺, 周士芸, 谢泉, 等. Co掺杂β-FeSi2电子结构及光学性质的第一性原理研究[J]. 光学学报, 2011, 31(6): 0616003.

    Yan Wanjun, Zhou Shiyun, Xie Quan, et al.. First principles study of electronic structure and optical properties for Co-doped β-FeSi2 [J]. Acta Optica Sinica, 2011, 31(6): 0616003.

[28] 闫万珺, 周士芸, 谢泉, 等. Al掺杂浓度对CrSi2电子结构及光学性质的影响[J]. 光学学报, 2012, 32(5): 0516003.

    Yan Wanjun, Zhou Shiyun, Xie Quan, et al.. Effect of Al doping concentration on electronic and optical properties of CrSi2 [J]. Acta Optica Sinica, 2012, 32(5): 0516003.

杨志怀, 张云鹏, 张美光, 许强, 张亚妮, 张蓉. Na+对尖晶石结构Co(1-x)NaxCr2O4电子结构及光学性质的影响[J]. 光学学报, 2014, 34(11): 1102001. Yang Zhihuai, Zhang Yunpeng, Zhang Meiguang, Xu Qiang, Zhang Yani, Zhang Rong. Effect of Na+ on Electronic Structure and Optical Properties of Spinel Structure Co(1-x)NaxCr2O4[J]. Acta Optica Sinica, 2014, 34(11): 1102001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!