光子学报, 2013, 42 (8): 897, 网络出版: 2013-09-25   

谱线弯曲对计算光谱成像影响的分析与仿真

Analysis and Simulation of Effect of Spectral Line Bending on Computational Imaging Spectrometry
作者单位
1 中国科学技术大学 精密机械与精密仪器系, 合肥 230026
2 中国科学院光电研究院 计算光学成像技术重点实验室,北京 100094
摘要
计算光谱成像技术相比较传统光谱成像技术具有高通量、快照成像等优点,但由于色散元件的存在,同样受到谱线弯曲的影响.为了研究谱线弯曲对计算光谱成像系统信号采集、图谱混叠与重构结果的影响,结合系统原理及重构算法,分析计算了不同谱线偏移量下系统重构图像的相对峰值信噪比及复原光谱曲线的最大偏差.实验结果表明,谱线弯曲引起的探测器采样信号的光谱偏离会导致图谱混叠程度的变化,与没有谱线弯曲的情况相比,重构结果出现明显的偏差,复原光谱曲线两侧趋于平滑.对于光谱分辨率为10 nm的计算光谱成像系统,为了高准确度的复原目标场景,谱线弯曲引起的光谱偏移量应控制在半个像元以内.
Abstract
Compared to conventional imaging spectrometry, computational imaging spectrometry has the advantages of high throughput snapshot imaging etc. But because of the presence of the dispersive element, computational imaging spectrometry suffers the effect of spectral line bending. To study the effect of spectral line bending on signal acquisition, spatialspectral aliasing and reconstructed result in computational imaging spectrometry, combined with the principle of computational imaging spectrometry and reconstruction algorithm, the relative peak signaltonoise ratio of the reconstructed image and the maximal error of the reconstructed spectral curve with different spectral offset were calculated and analyzed. The experimental result showed that spectral offset of the signal acquired by the detector will change the degree of spatialspectral aliasing. The reconstructed results with spectral line bending exhibit distinct errors compared with no spectral line bending. And both sides of the reconstructed spectral curve tend to smooth. In order to reconstruct the object scene with high accuracy, spectral offset should be no more than half a pixel for computational imaging spectrometry with 10 nm resolution.
参考文献

[1] 黄敏, 朱晓, 朱启兵, 等. 基于高光谱图像的玉米种子特征提取与识别[J]. 光子学报, 2012, 41(7): 868-873.

    HUANG Min, ZHU Xiao, ZHU Qibin, et al. Morphological characteristics of maize seed extraction and identification based on the hyperspectral image[J]. Acta Photonica Sinica, 2012, 41(7): 868-873.

[2] HOLLSTEIN A, FISCHER J. Effects of salinity, temperature and polarization on top of atmosphere and water leaving radiances for case 1 waters[J]. Applied Optics, 2012, 51(33): 8022-8033.

[3] UK K, BEREZIN V B, PAPAYAN G V, et al. Spectrometer for fluorescencereflection biomedical research[J]. Journal of Optical Technology, 2013, 80(1): 4048.

[4] 姚保利, 雷铭, 薛斌, 等. 高分辨率和超分辨率光学成像技术在空间和生物中的应用[J]. 光子学报, 2011, 40(11): 1607-1618.

    YAO Baoli, LEI Ming, XUE Bin, et al. Progress and applications of highresolution and superresolution optical imaging in space and biology[J]. Acta Photonica Sinica, 2011, 40(11): 1607-1618.

[5] 王欣, 丁学专, 杨波, 等. 棱镜分光光谱仪的光学系统设计与光谱特性计算[J]. 光子学报, 2010, 39(7): 1334-1339.

    WANG Xin, DING Xuezhuan, YANG Bo, et al. Optical design and spectral calculation of prism spectrometer[J]. Acta Photonica Sinica, 2010, 39(7): 1334-1339.

[6] JOHN OTTEN III L, BUTLER E W, RAFERT J B, et al. The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environmental remote sensing[C]. SPIE, 1995, 2480: 418-424.

[7] 王新全, 黄旻, 高晓惠, 等. 基于液晶可调谐滤光片的便携式多光谱成像仪[J]. 光子学报, 2010, 39(1): 71-75.

    WANG Xinquan, HUANG Min, Gao Xiaohui, et al. Portable multispecral imager based on LCTF[J]. Acta Photonica Sinica, 2010, 39(1): 71-75.

[8] BRADY D J, GEHM M E. Compressive imaging spectrometers using coded apertures[C]. SPIE, 2006, 6246: 62460A19.

[9] WAGADARIKAR A, JOHN R, WILLETT R, et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): 44-51.

[10] DAVIS C O, BOWLES J, LEATHERS R A, et al. Ocean PHILLS hyperspectral imager: design, characterization, and calibration[J]. Optics Express, 2002, 10(4): 210-221.

[11] WAGADARIKAR A A, PITSIANIS N P, SUN Xiaobai, et al. Spectral image estimation for coded aperture snapshot spectral imagers[C]. SPIE, 2008, 7076: 7076021-15.

[12] ARGUELLO H, ARCE G R. Code aperture optimization for spectrally agile compressive imaging[J]. Journal of the Optical Society of America A, 2011, 28(11): 2400-2413.

[13] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

[14] NEVILLE R A, SUN L, STAENZ K. Detection of spectral line curvature in imaging spectrometer data[C]. SPIE, 2003, 5093: 144-154.

[15] BIOUCASDIAS J M, FIGUEIREDO M A T. A new TwIST: twostep iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16: 2992-3004.

[16] http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_images_of_natural_scenes_04.html.

[17] GEHM M E, MCCAIN S T, PITSIANIS N P, et al. Static twodimensional aperture coding for multimodal multiplex spectroscopy[J]. Applied Optics, 2006, 45(13): 2965-2974.

[18] GREEN R O. Spectral calibration requirement for Earthlooking imaging spectrometers in the solarreflected spectrum[J]. Applied Optics, 1998, 37(4): 683-690.

钱路路, 相里斌, 吕群波, 黄旻. 谱线弯曲对计算光谱成像影响的分析与仿真[J]. 光子学报, 2013, 42(8): 897. QIAN Lulu, XIANGLI Bin, Lv Qunbo, HUANG Min. Analysis and Simulation of Effect of Spectral Line Bending on Computational Imaging Spectrometry[J]. ACTA PHOTONICA SINICA, 2013, 42(8): 897.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!