强激光与粒子束, 2020, 32 (12): 121010, 网络出版: 2021-01-06   

高功率半导体激光泵浦源研究进展 下载: 1220次

Research progress of high power semiconductor laser pump source
作者单位
1 中国科学院 半导体研究所,光电子器件国家工程研究中心,北京 100083;中国科学院大学 材料科学与光电技术学院,北京 100049
2 中国科学院 半导体研究所,光电子器件国家工程研究中心,北京 100083
摘要
高功率半导体激光器是固体激光器和光纤激光器的主要泵浦源。激光泵浦源性能的大幅提升直接促进了固体激光器、光纤激光器等激光器的发展。主要介绍了8xx nm和9xx nm系列半导体激光泵浦源的最新研究进展,8xx nm单管输出功率已达18.8 W@95 μm,巴条输出功率已达1.8 kW(QCW),9xx nm单管输出功率已达35 W@100 μm,巴条输出功率已达1.98 kW(QCW)。谱宽<1 nm的窄谱宽半导体激光器输出功率可达14 W。展望了未来半导体激光器泵浦源的发展趋势。
Abstract
High power semiconductor lasers are the main pump source for solid-state lasers and fiber lasers. The improvement in the performance of laser pump sources directly promotes the development of solid-state lasers, fiber lasers and other lasers. The article introduces the latest research progress of 8xx nm and 9xx nm semiconductor laser pump sources. The output power research level of 8xx nm single-emitter laser has reached 18.8 W@95 μm, the output power research level of 8xx nm laser bar has reached 1.8 kW(QCW), the output power research level of 9xx nm single-emitter laser has reached 35 W@100 μm, the output power research level of 9xx nm laser bar has reached 1.98 kW(QCW). The output power of a narrow linewidth semiconductor laser with a linewidth <1 nm can reach 14 W. The development trend of semiconductor laser pump source in the future is forecasted.

高功率半导体激光器泵浦的固体激光器和光纤激光器具有效率高、寿命长、稳定性好、光束质量好的优点[1-2]。近红外波段8xx nm和9xx nm的高功率半导体激光器在泵浦固体激光器和光纤激光器的应用非常广泛,是相对比较成熟的泵浦光源。如808 nm半导体激光器是Nd3+:YAG固体激光器最理想和高效的泵浦源[3-4];915 nm和976 nm半导体激光器主要用作掺镱光纤激光器和光纤放大器的泵浦源[5]。固体激光器、光纤激光器的发展对半导体激光泵浦源的输出功率、转换效率及光束质量提出更高的需求。本文主要介绍了8xx nm和9xx nm半导体激光器最新研究进展,并展望了高功率半导体激光泵浦源的发展趋势。

1 高功率半导体激光器

高功率半导体激光泵浦源的单元器件包括单管和巴条,如图1所示。单元器件的综合特性决定了最终泵浦源模块的输出光功率、转换效率以及体积等。单管器件是指只有一个发光区的半导体激光器,发光区通常在3~300 μm。而巴条是指多个发光区集成在同一衬底上的半导体激光器,通常1 cm长,也叫cm 巴条。提高半导体激光泵浦源单元器件输出功率和转换效率的方法主要从芯片结构上采用大光腔外延结构、宽条形结构、腔面钝化、增加腔长等措施,同时提高激光器的材料生长质量和优化散热封装技术也是关键。

图 1. Semiconductor laser unit device (the picture comes from the internet)半导体激光器单元器件(图片来源于网络)

Fig. 1.

下载图片 查看所有图片

固体激光器泵浦源的主要封装形式是多个巴条按照一定形式堆叠起来形成水平叠阵(H-array)或者垂直叠阵(V-array)或者二维面阵,并可对其进行光束压缩整形等形成泵浦模块,如图2所示。叠层泵浦源的输出功率可提升至几十kW甚至几百kW。由于半导体激光器叠阵工作时会产生大量的废热,因此必须采用冷却手段降低器件温度,防止温度过高导致激光器失效和使用寿命缩短。目前主要有两种冷却方式:帕尔贴形开放式制冷以及水等高效载冷剂方式。具体采用哪种制冷方式应该根据器件的输出功率、工作环境和应用方式确定。

图 2. Schematic of semiconductor laser stack (The picture comes from the internet)叠层激光器示意图(图片来源于网络)

Fig. 2.

下载图片 查看所有图片

光纤激光器泵浦源的主要封装形式是多单管集成阵列式合束模块。它是由多个半导体激光器单管经光束整形、合束、平行排列组合起来作为最小光学模组,多个光学模组还可并联形成阶梯型多单管半导体阵列合束,实现直接光纤输出,输出功率可达到几十W至数百W,这种形式的泵浦源模块不但能实现较大的功重比,而且具有较高的可靠性和可维护性。此外,脊型结构[6]、MOPA结构[7]以及侧向反引导结构[8]设计也被引入到光纤激光器泵浦源的研制中,以提高光纤激光器的泵浦效率。

2 8xx nm系列高功率半导体激光器

2.1 8xx nm高功率单管芯半导体激光器及多单管合束泵浦源

730~880 nm是8xx nm系列常用的泵浦源波段,所用的材料系是GaAs/AlGaAs量子阱或者InGaAsP/GaInP量子阱。8xx nm半导体激光器单管芯进展情况如表1所示[9-14],室温连续输出功率已达到10 W@100 μm以上。例如,2016年德国JENOPTIK[11]制备出的条宽100 μm的808 nm半导体激光器输出功率可达15 W,条宽200 μm时输出功率可达22 W,如图3所示[11]。本单位研制的880 nm单管芯半导体激光器输出功率达19 W/@200 µm,如图4所示。

表 1.

Output power of 8xx nm single-emitter lasers

8xx nm半导体激光器单管输出功率

Table 1.

Output power of 8xx nm single-emitter lasers

8xx nm半导体激光器单管输出功率

yearwavelength/nmoutput power/Wkey parametersconversion efficiency/%research groupreference
201488x18.895 μm,3.8 mm58USA,nLight[9]
201580810190 μm,4 mmJapan,Optoenergy[10]
201680822200 μm54JENOPTIK[11]
20168089140 μm,2 mm63%Coherent[12]
201980814200 μm,4 mm64Ferdinand-Braun-Institut[13]
20198082.8100 μm,2 mmWang Yue[14]
202088019200 μm,4 mmInstitute of Semiconductors of CAS

查看所有表

图 3. Output characteristics of the 808 single-emitter diode lasers reported by Jenoptik德国Jenoptik报道的808 nm单管激光器输出特性

Fig. 3.

下载图片 查看所有图片

图 4. Comprehensive parameter test chart of 880 nm 200 μm wide single-emitter semiconductor laser reported by Institute of Semiconductors,CAS中国科学院半导体研究所研制的880 nm 200 µm条宽单管芯半导体激光器综合参数测试图

Fig. 4.

下载图片 查看所有图片

美国nLight[9]采用双有源区隧穿外延结构,腔长3.8 mm、条宽95 μm单管芯激光器输出功率最高可达18.8 W,而相同尺寸结构的单有源区激光器最高输出功率达17 W,输出特性如图5所示[9]

图 5. Output characteristics of the 88x nm single-emitter diode lasers reported by nLight in USA美国nLight报道的88x nm单管激光器输出特性

Fig. 5.

下载图片 查看所有图片

激光合束是将多束单元激光耦合成一束的过程,它基于半导体激光的相位、光强、偏振及光谱等特性,利用光学元件的折射、反射及衍射效应,改变或不改变激光单元的振荡特性,实现提高输出功率、增加激光亮度及改善光束质量目的。当前实用化的高功率半导体激光合束光源主要基于非相干合束技术,经历了从传统合束技术到密集波长合束和光谱合束并行发展的两个阶段。密集波长合束和光谱合束为半导体激光技术领域注入新的活力,直接使得半导体激光源的光束质量提高近15倍。瑞士OCLARO公司采用阶梯反射镜法,经芯径105 μm光纤可出射光功率100 W[15]。凯普林公司应用体布拉格光栅锁模技术制备芯径105 μm,数值孔径0.15的光纤耦合二极管激光器,在波长976 nm时,输出功率达100 W,光谱宽度0.5 nm[16]。中国科学院长春光学精密机械与物理研究所将24只波长为808 nm的单管激光器分成四组集成,耦合进芯径为300 μm、数值孔径0.22的光纤中,在8.5 A电流下输出功率为162 W,耦合效率达到84%[17]。北京工业大学报道了将12路波长为860 nm、输出功率3 W的单管半导体激光器耦合进芯径105 μm、数值孔径0.22的光纤中,光纤输出功率33.4 W,光纤耦合效率为92.78%[18]

2.2 8xx nm高功率半导体激光巴条及其叠层泵浦源

随着单管激光器输出功率的提高,8xx nm激光器巴条连续输出功率已经达到百W,准连续输出功率可达600 W,如表2所示[19-26]

表 2.

Output power of 8xx nm laser bar

8xx nm激光器巴条输出功率

Table 2.

Output power of 8xx nm laser bar

8xx nm激光器巴条输出功率

yearwavelength/nmoutput powerkey parametersfill factor/%research groupreference
201288xQCW:560 Wbar width:3 mm; cavity length:3 mm 80USA,nLight[19]
2013808CW:150 Wbar width:1 cm; cavity length:1.5 mm 50USA,nLight[20]
201488xQCW:630 Wbar width:3 mm; cavity length:3 mm 80USA,nLight[9]
2016808QCW:200 Wbar width:5 mm; cavity length:1.5 mm Russia[21]
2016880QCW:250 Wbar width:0.5 cm80USA,nLight[22]
201780xQCW:210 Wbar width:5 mm; cavity length:1 mm 72M.A. Ladugin[23]
20178801.8 kW(200 μs,14 Hz)bar width:1 cm; cavity length:3 mm 80USA,nLight[24]
2017808QCW:613 Wcavity length:2 mm85Xi’an Institute of Optics and Precision Mechanics of CAS [25]
2018808QCW:500 Wcavity length:1.5 mm80OSRAM[26]
20208xxCW:200 Wcm-barInstitute of Semiconductors of CAS

查看所有表

美国nLight[20]公司通过腔面钝化技术实现高效的大功率连续波工作,填充因子50%的808 nm激光器巴条,腔长1.5 mm,最高转换效率58%,输出功率可达150 W,测试得到的输出特性如图6所示[20]。OSRAM公司[26]报道的填充因子为80%的808 nm激光器巴条,包含34个发光区,腔长1.5 mm,电流为400 A时,准连续输出功率达到500 W。准连续工作巴条的最高报道水平是nLight的双有源区隧穿激光器巴条,准连续条件下(200 μs,14 Hz)输出峰值功率可达1.8 kW[24]

图 6. Output characteristics of the 808 nm laser bar reported by nLight in USA (HT represents high temperature, HE represents high efficiency)美国nLight报道的808 nm 巴条激光器输出特性,其中HT代表高温,HE代表高效率

Fig. 6.

下载图片 查看所有图片

本单位研制的8xx cm-bar连续条件下输出功率可达200 W/bar,最高电光转换效率53%。特性测试图如图7所示。苏州长光华芯报道了填充因子为80%的808 nm准连续半导体激光器巴条,输出功率≥500 W。此外,西安光学精密机械研究所报道808 nm准连续半导体激光器巴条,填充因子85%,峰值输出功率达613 W[25]

图 7. Comprehensive parameter tests chart of 8xx nm (CW) semiconductor laser reported by Institute of Semiconductors,CAS中科院半导体研究所研制的8xx nm连续半导体激光器特性参数测试图

Fig. 7.

下载图片 查看所有图片

日本Hamamatsu公司一直致力于半导体激光器叠阵研究,结合激光束整形技术,推出了多款商用半导体激光器bar条模块,报道波长为808 nm的L13713-16P808半导体激光器模块,峰值输出功率高达1600 W。德国DILAS公司提出了窄带宽、波长稳定的8xx垂直叠层器件,该器件由30个巴条叠放组成,在110 A下输出功率达到3375 W,转换效率大于60%,25 ℃光谱总宽度小于0.7 nm[27]

本单位所研制的808 nm准连续(200 μs,100 Hz)半导体激光泵浦源叠层器件可实现平面、弧形、梯形等用户定制封装形式,已供货的单个叠层器件的输出光功率已可达到万W级。此外,中国科学院西安光学精密机械研究所报道了具有30个巴条的叠层器件,激射波长为808 nm,在准连续条件下(30 ms,10 Hz)输出功率达到3020 W[28]

3 9xx nm系列高功率半导体激光器

3.1 9xx nm高功率单管芯半导体激光器及多单管合束泵浦源

9xx nm大功率半导体激光器已经成为稳定的泵浦源,泵浦固体激光器[29]、光纤放大器[30-31]等,所用的材料系是AlInGaAs/GaAs量子阱。9xx nm单管芯半导体激光器的进展现状如表3所示[32-43]。单管芯片领先的研究单位为美国的IPG,单管最大功率超过35 W@100 μm条宽。国外多家公司如日本的Fujikura公司、美国JDSU公司、德国Jenoptik公司等均推出了商用大功率半导体激光器,美国JDSU公司[35]通过理论和实验证明了限制半导体激光器输出功率的内在机制,采用了开腔设计方法,解决了高功率输出的纵向空间烧孔效应和双光子吸收效应问题,成功研制了100 μm条宽、5.7 mm腔长的9xx nm半导体激光器,最大连续输出功率达到29.5 W,测试结果如图8所示[35]。日本的Fujikura公司对激射波长为915 nm的激光器采用具有嵌入式电流阻挡层的自对准结构(SAS)和非对称的异质限制层设计,通过刻蚀电流阻挡层形成注入条纹,调整了激光垂直层设计和条纹宽度的光学限制和电阻,优化有源层位置和多层结构,将有源区的限制因子降低到0.4%,设计的激光器腔长4 mm、条宽220 μm时的单管输出功率可达25~33 W,27 W时电光转换效率可达60%[39]。德国FBH研究所通过用微通道制冷代替铜载体方式,获得24.6 W@96 μm的连续功率输出[44]

表 3.

Output power of 9xx nm single-emitter semiconductor lasers

9xx nm半导体激光器单管输出功率

Table 3.

Output power of 9xx nm single-emitter semiconductor lasers

9xx nm半导体激光器单管输出功率

yearwavelength/nmoutput power/Wkey parametersconversion efficiency/%research groupreference
20099802096 μm,4 mmFerdinand-Braun-Institut[32]
201397515100 μm,4 mm74Ferdinand-Braun-Institut[33]
201391513.585 μm,4 mmS.McDougall[34]
20159xx29.5100 μm,5.7 mmUSA,JDSU[35]
201591518150 μm,5 mm58USA,nLight[36]
201591524100 μm,4 mm60Japan,Optoenergy[37]
201691512.495 μm,4.8 mm60Research Institute of Tsinghua University in Shenzhen [38]
201791533220 μm,4 mm60Japan,Fujikura[39]
201894014100 μm,4 mm63Ferdinand-Braun-Institut[40]
201997520200 μm,4 mm66.7Japan,Fujikura[41]
20199xx14.4200 μm,2 mm71.8Institute of Semiconductors of CAS[42]
202097521100 μm,4 mmInstitute of Semiconductors of CAS[43]

查看所有表

图 8. Output characteristics of the 9xx nm single-emitter diode lasers reported by JDSU in USA美国JDSU报道的9xx nm单管激光器输出特性

Fig. 8.

下载图片 查看所有图片

中科院半导体研究所在9xx nm单管芯半导体激光器方面开展了深入的研究,已实现975 nm和915 nm单管芯输出功率达21 W@100 μm[43],最高电光转换效率大于70%。稳定工作的COS封装9xx nm单管芯半导体激光器输出功率为10~15 W。苏州长光华芯研制的940 nm和915 nm单管芯输出功率达30 W@230 µm,COS封装的单管芯半导体激光器输出功率为12~20 W。

在9xx nm多单管耦合方面,美国Fraunhofer将120个单管耦合进200 μm光纤,输出功率>700 W。美国nLight将72个940 nm波长的单管排列成4个单元,实现光纤输出700 W连续功率。国内苏州长光华芯也实现了976 nm输出功率700 W的光纤耦合模块研制。

3.2 9xx nm高功率半导体激光巴条

随着9xx nm单管半导体激光器性能的提升,9xx nm激光器巴条输出性能也大幅提升,如表4所示[45-54]。德国费迪南德布劳恩研究所(Ferdinand-Braun-Institut)对940 nm[47]激光器巴条分别进行了单量子阱和双量子阱的设计,所设计的双量子阱激光器巴条转换效率略低于单量子阱激光器巴条,但输出功率高,腔长4 mm的激光器双量子阱巴条在准连续条件下(0.2 ms,10 Hz),−70 ℃时输出功率达1.98 kW,转换效率57%,其输出特性如图9所示[47]

表 4.

Output power of 9xx nm laser bar

9xx nm激光器巴条输出功率

Table 4.

Output power of 9xx nm laser bar

9xx nm激光器巴条输出功率

yearwavelength/nmoutput powerkey parametersfill factor/(%)research groupreference
20139xxQCW:1.7 kWbar width:1 cm; cavity length:6 mm 72Ferdinand-Braun-Institut[45]
2014940CW:200 Wcavity length:4 mm50Jenoptik[46]
2015940QCW:1.98 kWbar width:1 cm; cavity length:4 mm 69Ferdinand-Braun-Institut[47]
20159xx>300 W60USA,Trumpf Photonics[48]
2016940QCW:1 kWbar width:1 cm; cavity length:4 mm 69Ferdinand-Braun-Institut[49]
2017940QCW:600 Wbar width:1 cm; cavity length:4 mm 70M. M. Karow[50]
2018938CW:476 W60USA,Trumpf Photonics[51]
20199xx450 Wbar width:1 cm; cavity length:4.2 mm 73II-VI Laser Enterprise[52]
20199xx1 kW(0.2 ms,10 Hz)87Ferdinand-Braun-Institut[53]
2019960665.6 W(500 μs)bar width:1 cm; cavity length:2 mm 63.8Xi’an Institute of Optics and Precision Mechanics of CAS [54]
20209xxCW:300 W, QCW:996 W cm-bar70Institute of Semiconductors of CAS

查看所有表

图 9. Output characteristics of the 940 nm laser bar reported by Ferdinand-Braun-InstitutFBH报道的940 nm 巴条激光器输出特性

Fig. 9.

下载图片 查看所有图片

2017年M. M. Karow等人了报道了填充因子为70%的940 nm激光器巴条,条宽1 cm、腔长4 mm,在准连续条件下输出功率为600 W,转换效率为60%[50]。美国Trumpf Photonics[51]为了提高效率和输出功率,通过优化芯片外延层设计和采用双面微通道冷却技术制备了激射波长938 nm的激光器巴条,将制备好的巴条放在冷却器上进行器件特性测试,11 ℃以下,电流为450 A时连续输出功率为476 W,转换效率达到60%,其测试特性如图10所示[51]

图 10. Output characteristics of the 938 nm laser bar reported by Trumpf photonicsTrumpf photonics报道的938 nm 巴条激光器输出特性

Fig. 10.

下载图片 查看所有图片

本单位在9xx nm 巴条激光器研究上也取得巨大进展,所研制的940 nm 巴条激光器常温时连续输出功率可达300 W,2%占空比−50 ℃时准连续输出功率近1 kW,最大转换效率大于70%,如图11所示。此外,中科院西安光学精密机械研究所研制的微通道水冷封装960 nm 巴条,腔长2 mm、条宽10 mm,填充因子为75%,在脉宽为500 μs、占空比10%的脉冲下,输出的峰值功率达到了665.6 W,电光转换效率为63.8%[54]。苏州长光华芯研制的填充因子80%的940 nm准连续巴条,输出功率≥700 W。

图 11. Comprehensive parameter test results of 940 nm quasi-continuous laser bar reported by Institute of Semiconductors,CAS中科院半导体研究所研制的940 nm准连续巴条特性参数测试结果

Fig. 11.

下载图片 查看所有图片

3.3 9xx nm窄线宽高光束质量半导体激光器

固体激光器中掺杂离子吸收峰的谱宽很窄[55-56],只有几nm,为了提高泵浦效率,窄线宽、波长稳定的泵浦源激光器也成为了研究热点之一,9xx nm窄线宽高光束质量半导体激光器研究进展如表5所示[57-62]。对于高功率半导体激光器,通常采用光栅控制纵向模式,获得窄线宽激光输出,常见的光栅结构主要为分布布拉格反射(DBR)结构和分布反馈(DFB)结构,其结构示意图如图12所示。德国FBH研究所报道了一种高功率宽面积分布布拉格反射(DBR)激光器,该激光器采用I线晶片步进光刻和反应离子刻蚀制作六阶布拉格光栅,激光器条宽90 μm,激射波长为980 nm,输出功率达14 W,光谱线宽小于1 nm[58]。德国FBH研究所采用80阶V型表面光栅制备的DFB激光器,获得了激射波长976 nm、出光功率达到11 W的高功率激光输出,其线宽小于1 nm[59]。德国OSRAM公司研制了976 nm激光器巴条,该激光器具有较高的光束质量,在光束参数乘积为15 mm·mrad时,巴条输出功率为44 W,慢轴光束发散为7°,线性亮度为2.9 W/(mm·mrad),该激光器巴条是由5个腔长4 mm,条宽100 μm的边发射激光器组成[63]。长春理工大学采用DBR结构制备的980 nm高功率半导体激光器,在器件注入电流15 A时激光器输出功率高达10.7 W,中心波长为979.3 nm[62]

表 5.

Research progress of 9xx nm high-power narrow-linewidth semiconductor laser

9xx nm高功率窄谱宽半导体激光器研究进展

Table 5.

Research progress of 9xx nm high-power narrow-linewidth semiconductor laser

9xx nm高功率窄谱宽半导体激光器研究进展

yearwavelength/nmoutput power/Wdevice typespectral linewidth/nmresearch groupreference
201097510DFB,second order grating<1Ferdinand-Braun-Institut[57]
201098014DBR,sixth order grating<1Ferdinand-Braun-Institut[58]
201297611DFB,eightieth-order grating<1Ferdinand-Braun-Institut[59]
20149706DFB,eightieth-order grating<0.7Jonathan Decker[60]
20179755.5DFB,second order grating<1Mostallino[61]
201998010.7DBR,sixth order grating2.77Qiao Chuang[62]

查看所有表

图 12. Schematic diagram of DBR and DFB laser structureDBR和DFB激光器结构示意图

Fig. 12.

下载图片 查看所有图片

为了获得高的光束质量、高的输出功率以及线宽更窄的半导体激光器,近年来科研人员对MOPA做了很多创新型研究[64-68]。MOPA结构是由主振荡器和放大器组成,主振荡器提供高光束质量的种子光,接着由放大器进行放大,主振荡器可以是任何能提供单模光束的激光器,采用脊型波导、DFB和DBR结构是最优的组合。2011年德国报道了一种混合MOPA系统,由垂直远场为30°的单模DBR脊波导激光器作主振荡器、一个8 mm长的抗反射涂层截锥形的功率放大器组成,激射波长为970 nm,在准连续条件下输出功率为56 W,谱宽42 pm[64]。德国FBH研究所制作了975 nm波段的MOPA结构二极管激光器,其主振荡器是分布式反馈脊形波导(DFB-RW)激光器,最大输出功率16.3 W,线宽小于10 pm,边摸抑制比大于40 dB[65]。9xx nm窄线宽高光束质量半导体激光器将是半导体激光泵浦源的一个发展热点,目前国内还没有非常成熟的技术以及产品,有待进一步发展。

4 结 论

为满足激光泵浦源在泵浦固体激光器、光纤激光器及其它激光器的应用需求,半导体激光器正向着高功率、高光束质量的方向发展。未来高功率半导体激光器关键技术发展方向主要包含以下几个方面:(1)开发优化半导体激光器外延结构;(2)优化制备工艺;(3)开辟新的封装技术;(4)激光器集成技术。虽然我国高功率半导体激光器的研究起步晚,但是国家重视半导体激光器,提高了在此领域的投入,大大缩短与国外差距,未来发展不仅要突破关键技术,还要实现研发与产品的转化,实现高端激光泵浦源芯片和器件的自主研发。

参考文献

[1] 闫宏宇. 高功率半导体激光器的光束特性评价[D]. 长春: 长春理工大学, 2019: 15.Yan Hongyu. Evaluation of beam acteristics of high power semiconduct laser[D]. Changchun: Changchun University of Science Technology, 2019: 15

[2] 王涛, 杜团结, 吴逢铁. LD泵浦的Nd:YVO4激光器被动式产生近似无衍射绿光[J]. 强激光与粒子束, 2014, 26:011007. (Wang Tao, Du Tuanjie, Wu Fengtie. Laser diode pumped Nd:YVO4laser generating quasi-non-diffracting green beam by passive axicon[J]. High Power Laser and Particle Beams, 2014, 26: 011007

[3] 乔忠良. 高亮度大功率半导体激光器研究[D]. 长春: 长春理工大学, 2011: 12.Qiao Zhongliang. Research on highpower highbrightness semiconduct lasers[D]. Changchun: Changchun University of Technology, 2011: 12

[4] 李再金, 胡黎明, 王烨, 等. 808 nm高占空比大功率半导体激光器阵列[J]. 强激光与粒子束, 2009, 21(11):1615-1618. (Li Zaijin, Hu Liming, Wang Ye, et al. High power high duty-cycle 808 nm wavelength laser diode[J]. High Power Laser and Particle Beams, 2009, 21(11): 1615-1618

[5] 许阳, 房强, 谢兆鑫, 等. 基于915 nm半导体激光单端前向抽运的单纤准单模2 kW全光纤激光振荡器[J]. 中国激光, 2018, 45:0401003. (Xu Yang, Fang Qiang, Xie Zhaoxin, et al. Single fiber quasi-single mode 2 kW all-fiber laser oscillator based on single-end 915 nm semiconductor laser forward-pumping[J]. Chinese Journal of Lasers, 2018, 45: 0401003

[6] 刘储. 脊型波导852 nm半导体激光器模式特性研究[D]. 北京: 北京工业大学, 2017: 1728.Liu Chu. Fundamental lateral mode acteristics of the 852 nm ridge waveguide semiconduct laser diode[D].Beijing: Beijing University of Technology, 2017: 1728

[7] 李璟, 马骁宇, 王俊. 高功率14xx nm锥形增益区脊形波导结构量子阱激光器的研制[J]. 半导体学报, 2007, 28(1):108-112. (Li Jing, Ma Xiaoyu, Wang Jun. High-power ridge waveguide tapered diode lasers at 14xx nm[J]. Chinese Journal of Semiconductors, 2007, 28(1): 108-112

[8] Winterfeldt M, Crump P, Knigge S, et al. High beam quality in broad area lasers via suppression of lateral carrier accumulation[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1809-1812.

[9] Chen Z G, Bai J, Dong W, et al. High power high efficiency kW 88xnm multijunction pulsed diode laser bars arrays[C]Proc of SPIE. 2014: 896514.

[10] Yamagata Y, Yamada Y, Kaifuchi Y, et al. Perfmance reliability of high power, high brightness 8xx9xx nm semiconduct laser diodes[C] IEEE High Power Diode Lasers & Systems Conference. 2015: 78.

[11] Pietrzak A, Hülsewede R, Zn M, et al. Highpower single emitters low fill fact bars emitting at 808 nm[C]Proc of SPIE. 2016: 97330R.

[12] Males J, Lehkonen S, Liu G, et al. Advances in 808 nm high power diode laser bars single emitters[C]Proc of SPIE. 2016: 97330T.

[13] Crump P, Frevert C, Maaβdf A, et al. Efficient, high power pumps f IR solid state lasers enabled by 200 k operation of 808 nm diode lasers[C] IEEE Conference on Lasers ElectroOptics Europe & European Quantum Electronics Conference. 2019.

[14] 王岳, 王勇, 李占国, 等. 全息光刻制备808 nm腔面光栅半导体激光器[J]. 发光学报, 2019, 40(9):1130-1135. (Wang Yue, Wang Yong, Li Zhanguo, et al. 808 nm cavity surface grating semiconductor laser by holographic lithography[J]. Chinese Journal of Luminescence, 2019, 40(9): 1130-1135

[15] Pierer J, Lützelschwab M, Grossmann S, et al. Automated assembly processes of high power single emitter diode lasers f 100 W in 105 μmNA 0.15 fiber module[C]Proc of SPIE. 2011: 78190I.

[16] Jiang Xiaochen, Liu Rui, Gao Yanyan, et al. Packaging of wavelength stabilized 976 nm 100 W 105 m 0.15 NA fiber coupled diode lasers[C]Proc of SPIE. 2016: 97300I.

[17] 朱洪波, 郝明明, 彭航宇, 等. 基于808 nm半导体激光器单管合束技术的光纤耦合模块[J]. 中国激光, 2012, 39(5):1-5. (Zhu Hongbo, Hao Mingming, Peng Hangyu, et al. Module of fiber coupled diode laser based on 808 nm single emitters combination[J]. Chinese Journal of Lasers, 2012, 39(5): 1-5

[18] 杨逸飞, 秦文斌, 刘友强, 等. 基于光束填充的多单管半导体激光器光纤耦合[J]. 强激光与粒子束, 2020, 32:071005. (Yang Yifei, Qin Wenbin, Liu Youqiang, et al. Research on fiber coupling of multi-single emitters diode laser based on beam filling[J]. High Power Laser and Particle Beams, 2020, 32: 071005

[19] Bai J G, Chen Z, Leisher P, et al. Highefficiency kWclass QCW 88x nm diode semiconduct laser bars with passive cooling[C]Proc of SPIE. 2012, 82412.

[20] Bai J G, Bao L, Dong W, et al. Optimized perfmance of 808 nm diode laser bars f efficient highpower operation[C]Proc of SPIE. 2013: 86050F7.

[21] Bagaev T A, Ladugin M A, reev A Y, et al. Highpower 808 nm laser bars (5 mm) with wallplug efficiency me than 67%[C]IEEE International Conference Laser Optics. 2016: R331.

[22] Males J, Lehkonen S, Liu G, et al. Advances in 808 nm high power diode laser bars single emitters[C]Proc of SPIE. 2016: 97330T.

[23] Ladugin M A, Marmalyuk A, Padalitsa A, et al. Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%[J]. Quantum Electronics, 2017, 47(4): 291-293.

[24] Kanskar M, Chen Z, Dong W, et al. High power and high efficiency 1.8-kW pulsed diode laser bar[J]. Journal of Photonics for Energy, 2017, 7: 016003.

[25] 王贞福, 李特, 杨国文, 等. 808 nm准连续600 W高功率半导体激光芯片研制[J]. 中国激光, 2017, 44(6):43-48. (Wang Zhenfu, Li Te, Yang Guowen, et al. Development of 808 nm quasi-continuous wave laser diode bar with 600 W output power[J]. Chinese Journal of Lasers, 2017, 44(6): 43-48

[26] Müller M, Hein S, Lauer C, et al. Advances in infrared high power lasers f long term operation[C]Proc of SPIE. 2018: 105410I.

[27] Köhler B, Unger A, Kindervater T, et al. Wavelength stabilized multikW diode laser systems[C]Proc of SPIE. 2015: 93480Q.

[28] Hou Dong, Wang Jingwei, Zhang Pu, et al. High power diode laser stack development using goldtin bonding technology[C]Proc of SPIE. 2015: 934604.

[29] Sipes D L. Highly efficient neodymium: yttrium aluminum garnet laser end pumped by a semiconductor laser array[J]. Applied Physics Letters, 1985, 47(2): 74-76.

[30] Chung H S, Lee M S. Low noise, high efficiency L-band EDFA with 980 nm pumping[J]. Electronics Letters, 1999, 35(13): 1099-1100.

[31] Chen J, Zhu X, Sibbett W. Rate-equation studies of erbium-doped fiber lasers with common pump and laser energy bands[J]. Journal of the Optical Society of America B, 1992, 9(10): 1876-1882.

[32] Crump P, Blume G, Phke K, et al. 20 W continuous wave reliable operation of 980 nm broadarea single emitter diode lasers with an aperture of 96μm[C] Proc of SPIE. 2009: 719814.

[33] Frevert C, Crump P, Wenzel H, et al. Efficiency optimization of high power diode lasers at low temperatures[C]IEEE Conference on Lasers & ElectroOptics Europe & International Quantum Electronics Conference. 2013.

[34] McDougall S, McKee A, Eddie I, et al. Development of high power laser technology: 915 nm minibars f fibre laser pumping red laser bars f cinemaproject applications[C]IEEE High Power Diode Lasers Systems Conference. 2013: 2223.

[35] Demir A, Peters M, Duesterberg R, et al. 29.5 W continuous wave output from 100 μm wide laser diode[C]Proc of SPIE. 2015: 93480G.

[36] Bao L, Kanskar M, Devito M, et al. High reliability demonstrated on highpower highbrightness diode lasers[C]Proc of SPIE. 2015: 93480C.

[37] Yamagata Y, Yamada Y, Muto M, et al. 915 nm highpower broad area laser diodes with ultrasmall optical confinement based on Asymmetric Decoupled Confinement Heterostructure (ADCH)[C]Proc of SPIE. 2015: 93480F.

[38] Hu M, Wang W M, Kuang L X, et al. Highbrightness 95μm broadarea 915 nm lasers with 29.4 W COMD power[C]IEEE Asia Communications Photonics Conference. 2016.

[39] Zediker M S, Kaifuchi Y, Yamagata Y, et al. Ultimate high power operation of 9xxnm single emitter broad stripe laser diodes[C]Proc of SPIE. 2017: 100860D.

[40] Kaul T, Erbert G, Maassdorf A, et al. Suppressed power saturation due to optimized optical confinement in 9xx nm high-power diode lasers that use extreme double asymmetric vertical designs[J]. Semiconductor Science and technology, 2018, 33: 035005.

[41] Kaifuchi Y, Yoshida K, Yamagata Y, et al. Enhanced power conversion efficiency in 900 nm range single emitter broad stripe laser diodes maintaining high power operability[C] Proc of SPIE. 2019: 109000F.

[42] 袁庆贺, 井红旗, 仲莉, 等. 高功率高可靠性9xx nm激光二极管[J]. 中国激光, 2020, 47(4):61-65. (Yuan Qinghe, Jing Hongqi, Zhong Li, et al. High-power and high-reliability 9xx-nm laser diode[J]. Chinese Journal of Lasers, 2020, 47(4): 61-65

[43] 曼玉选, 仲莉, 马骁宇, 等. 极低内部光学损耗975 nm半导体激光器[J]. 光学学报, 2020:40:19140011. (Man Yuxuan, Zhong Li, Ma Xiaoyu, et al. 975 nm semiconductor lasers with ultra-low internal optical loss[J]. Chinese Journal of Luminescence, 2020: 40:19140011

[44] Crump P, Roder C, Staske R, et al. Limitations to peak continuous wave power in high power broad area single emitter 980 nm diode lasers[C]IEEE European Conference on Lasers & Electrooptics & European Quantum Electronics Conference. 2009.

[45] Crump P, Frevert C, Wenzel H, et al. Cryolaser: Innovative cryogenic diode laser bars optimized f emerging ultrahigh power laser applications[C] IEEE Conference on Lasers ElectroOptics.2013.

[46] Pietrzak A, Huelsewede R, Zn M, et al. New highly efficient laser bars laser arrays f 8xx10xx nm pumping applications[C]Proc of SPIE. 2014: 89650T.

[47] Frevert C, Crump P, Bugge F. Lowtemperature optimized 940 nm diode laser bars with 1.98 kW peak power at 203 K[C]IEEE Conference on Lasers ElectroOptics.2015

[48] Heinemann S, An H, Barnowski T, et al. Packaging of highpower bars f optical pumping direct applications[C]Proc of SPIE. 2015: 934807.

[49] Frevert C, Bugge F, Knigge S, et al. 940 nm QCW diode laser bars with 70% efficiency at 1 kW output power at 203 K: analysis of remaining limits path to higher efficiency power at 200 K 300 K[C]Proc of SPIE. 2016: 97330L.

[50] Karow M M, Frevert C, Platz R, et al. Efficient 600-W-laser bars for long-pulse pump applications at 940 and 975 nm[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1683-1686.

[51] Heinemann S, McDougall S D, Ryu G, et al. Advanced chip designs novel cooling techniques f brightness, scaling of industrial, high power diode laser bars[C]Proc of SPIE. 2018: 105140Y.

[52] Jürgen Müller, Rainer Bättig, Beer V, et al. Towards 300 W high power laser bars[C]Proc of SPIE. 2019: 109000C.

[53] Karow M M, Martin D, Della Casa P, et al. Narrower far field higher efficiency in 1 kW diodelaser bars using improved lateral structuring[C]IEEE Conference on Lasers ElectroOptics Europe & European Quantum Electronics Conference.2019

[54] 李波, 王贞福, 仇伯仓, 等. 高功率准连续半导体激光阵列中应变对独立发光点性能的影响[J]. 光子学报, 2020, 49(9):25-32. (Li Bo, Wang Zhenfu, Qiu Bocang, et al. Influence of strain on the performance of independent emitters in high power quasi-continuous semiconductor laser array[J]. Acta Photonica Sinica, 2020, 49(9): 25-32

[55] Demidovich A A, Shkadarevich A P, Danailov M B, et al. Comparison of CW laser performance of Nd:KGW, Nd: YAG, Nd: BEL, and Nd: YVO4 under laser diode pumping[J]. Applied Physics B, 1998, 67(1): 11-15.

[56] Leisher P, Price K, Karlsen S, et al. Highperfmance wavelengthlocked diode lasers[C]Proc of SPIE. 2009: 719812.

[57] Crump P, Schultz C M, Pietrzak A, et al. 975nm highpower broad area diode lasers optimized f narrow spectral linewidth applications[C]Proc of SPIE. 2010: 75830N.

[58] Fricke J, Bugge F, Ginolas A, et al. High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings[J]. IEEE Photonics Technology Letters, 2010, 22(5): 284-286.

[59] Fricke J, Wenzel H, Bugge F, et al. High-power distributed feedback lasers with surface gratings[J]. IEEE Photonics Technology Letters, 2012, 24(16): 1443-1445.

[60] Decker J, Crump P, Fricke J, et al. Narrow stripe broad area lasers with high order distributed feedback surface gratings[J]. IEEE Photonics Technology Letters, 2014, 26(8): 829-832.

[61] Mostallino R, Garcia M, Larrue A, et al. Thermal management acterization of microassemblied high power distributedfeedback broad area lasers emitting at 975 nm[C] IEEE 67th Electronic Components Technology Conference. 2017: 563574.

[62] 乔闯, 苏瑞巩, 李翔, 等. 980 nm高功率DBR半导体激光器的设计及工艺[J]. 中国激光, 2019, 46(7):16-20. (Qiao Chuang, Su Ruigong, Li Xiang, et al. Design and fabrication of 980 nm distributed Bragg reflection semiconductor laser with high power[J]. Chinese Journal of Lasers, 2019, 46(7): 16-20

[63] Lauer C, Bachmann A, Furitsch M, et al. Extra bright high power laser bars[C]IEEE High Power Diode Lasers Systems Conference. 2015: 3738.

[64] Wang X, Wenzel H, Eppich B, et al. 56 W optical output power at 970 nm from a d tapered semiconduct optical amplifier[C]IEEE Photonic Society 24th Annual Meeting. 2011: 577578.

[65] Vu T N, Klehr A, Sumpf B, et al. Tunable 975 nm nanosecond diode-laser-based master-oscillator power-amplifier system with 16.3 W peak power and narrow spectral linewidth below 10 pm[J]. Optics Letters, 2014, 39(17): 5138-5141.

[66] Fiebig C, Blume G, Kaspari C, et al. 12 W high-brightness single-frequency DBR tapered diode laser[J]. Electronics Letters, 2008, 44(21): 1253-1255.

[67] Wang X Z, Erbert G, Wenzel H, et al. 17 W near-diffraction-limited 970 nm output from a tapered semiconductor optical amplifier[J]. IEEE Photonics Technology Letters, 2013, 25(2): 115-118.

[68] 孙胜明, 范杰, 徐莉, 等. 锥形半导体激光器研究进展[J]. 中国光学, 2019, 12(1):51-61. (Sun Shengming, Fan Jie, Xu Li, et al. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 51-61

马骁宇, 张娜玲, 仲莉, 刘素平, 井红旗. 高功率半导体激光泵浦源研究进展[J]. 强激光与粒子束, 2020, 32(12): 121010. Xiaoyu Ma, Naling Zhang, Li Zhong, Suping Liu, Hongqi Jing. Research progress of high power semiconductor laser pump source[J]. High Power Laser and Particle Beams, 2020, 32(12): 121010.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!