光子学报, 2018, 47 (1): 0112004, 网络出版: 2018-01-30  

GSSM缩比模型子孔径拼接误差分析

Giant Science Steering Mirror Prototype Sub-aperture Testing Error Analysis
作者单位
1 中国科学院长春光学精密机械与物理研究所, 长春 130033
2 中国科学院大学, 北京 100039
摘要
巨型科学可控反射镜(GSSM)缩比模型(GSSMP)的子孔径拼接误差的分析可以指导GSSM的面形检测工作.GSSMP子孔径拼误差包括子孔径刚体位移误差以及中频扰动.对子孔径刚体位移误差而言, 合理的靶标布置以及最小二乘算法的使用, 可将误差量级降低到计算机可分辨的最低程度, 即不引入算法误差; 同时也降低了对测试执行部件的精度要求.对中频扰动误差而言, 可结合标准平面镜与干涉仪对实验环境中大气湍流的影响进行估计.除此之外, 对子孔径拼接顺序带来的误差进行分析.最后, 基于三十米望远镜的面形评价方法, 即斜率均方根对上述误差进行换算表征.算法修正后, 子孔径对准误差为 10-6 μrad、子孔径平移误差为10-6 μrad、子孔径倾斜误差为10-6 μrad以及大气扰动误差为0.04 μrad.利用信噪比来表征拼接顺序所带来的影响, 使用一个子孔径作为基准进行拼接的情况下, 拼接顺序带来的影响小于2%.本文的拼接算法, 可以在较低的机械精度下, 利用靶标对准与合理的拼接顺序, 达到较高的拼接精度.
Abstract
Giant Steerable Science Mirror (GSSM) is largest flat mirror as the tertiary mirror of Thirty Meter Telescope (TMT).To evaluate the performance of GSSM under gravity load, the mirror figure needs to be tested. Erorr analysis is the most imortant step for the reliability of metrology. For its large size and plate character, Sub aperture stitching will be used to reach the full aperture figure. GSSMP is the prototype of GSSM. Research on GSSMP sub aperture testing error will help understanding and learning how to build GSSM. The stitching error is divided into two parts: rigid body location error and middle frequency turbulence. According to each part, theoretical analysis and experience have been done drawing the conclusion that the algorithm with probable marks will suppress rigid body error efficiently and the influence of the turbulence is achieved by smaller aperture system and interferometer. What is more, stitching order is also related to stitching order. Using one reference aperture and fitting other apertures onto it allow introducing least error to the final result. All the performance is specified by Slope RMS,which is required by TMT.After fitting, Shift error is 10-6 μrad, Piston error is 10-6 μrad, Tip/tilt error is 10-6 μrad and Air turbulence is 0.04 μrad. The error involved by the rigid body is ignorable, and the air turbulence is 3nm in RMS. By Slope MS, the reqiured metric of TMT, the influence of stitching error will be discussed and the orders chosen here did not increase the Signal to Noise ratio significantly in the figure at the level of 2%. Here the conclution was drawed that feature will help a lot in lowering the stitching error.
参考文献

[1] YANG Fei, LIU Guo-jun, ZHAO Hong-chao, et al. Stiffness allocation and analysis of TMT M3S[J]. Editorial Office of Optics and Precision Engineering, 2016, 24(1): 152-159.

[2] XUE Shuai. Sub-aperture stitching test of a cylindrical mirror with large aperture[C]. Eighth International Symposium on Advanced Optical Manufacturing and Testing Technology (AOMATT2016). International Society for Optics and Photonics, 2016.

[3] SHAO Liang, ZHAO Yong-zhi, MING Ming, et al. Novel support for 1.2 m Zerodur primary mirror[J]. Editorial Office of Optics and Precision Engineering, 2016, 24(10): 2462-2470.

[4] SMITH G A, BURGE J H. Subaperture stitching surface errors due to noise[C]. SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, 2015: 95750W.

[5] ZHANG P, ZHAO H, LIU B, et al. Simple method for the implementation of subaperture stitching interferometry[J]. Optical Engineering, 2011, 50(9):

[6] ZHANG L, TIAN C, LIU D, et al. Non-null annular subaperture stitching interferometry for steep aspheric measurement[J]. Applied Optics, 2014, 53(25): 5755-5762.

[7] ZHAO K Q, BIJASTAD T, KRISTOFFERSEN K. Error analysis of subaperture processing in 1-d ultrasound arrays[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(4): 663-672.

[8] WANG Xiao-kun, Measurement of large off-axis convex asphere by systemic stitching testing method[J]. Chinese Optics, 2016, 9(1): 130-136.

[9] ZHAO Z, ZHAO H, GU F, et al. Non-null testing for aspheric surfaces using elliptical sub-aperture stitching technique[J]. Optics Express, 2014, 22(5): 5512-5521.

[10] XUE S, CHEN S, SHI F, et al. Sub-aperture stitching test of a cylindrical mirror with large aperture[C]. Eighth International Symposium on Advanced Optical Manufacturing and Testing Technology (AOMATT2016). International Society for Optics and Photonics, 2016: 96840C.

[11] HE Xu, YUAN Li. Wavefront reconstruction based on discrete sampling of sub-aperture slope[J]. Optics and Precision Engineering, 2016, 24(1): 20-29.

[12] YAN F, FAN B, HOU X, et al. Absolute subaperture testing by multiangle averaging and Zernike polynomial fitting method[J

[13] CHEN S, DAI Y, LI S, et al. Error reductions for stitching test of large optical flats[J]. Optics and Laser Technology, 2012, 44(5): 1543-1550.

[14] YAN L, WANG X, ZHEN L, et al. Experimental study on subaperture testing with iterative triangulation algorithm[J]. Optics Express, 2013, 21(19): 22628-22644.

[15] CHEN S, DAI Y, LIS PENG X. Calculation of subaperture aspheric departure in lattice design for subaperture stitching interferometry[J]. Optical Engineering, 2010, 49: 023601.

[16] MIYASHITA A, OGASAWARA R, TAKATO N, et al. Temperature control for the primary mirror and seeing statistics of Subaru Telescope[C]. Astronomical Telescopes and Instrumentation. International Society for Optics and Photonics, 2003: 255-263.

[17] OTSUBO M, OKADA K, TSUJIUCHI J. Measurement of large plane surface shapes by connecting small-aperture interferograms[J]. Optical Engineering, 33(1994): 608-613.

[18] ZHAO Xing, ZHENG Yi, ZHANG Zan, et al. Characterization of freeform optical surfaces based on surface slope[J]. Optics and Precision Engineering, 2015, 23(7): 1957-1964.

[19] ANGELI G Z, SEO B J, NISSLY C, et al. A convenient telescope performance metric for imaging through turbulence[C]. SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, 2011: 812709.

[20] SUPRANOWITZ C, MCFEE C, MURPHY P. Asphere metrology using variable optical null technology[C]. 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2012). International Society for Optics and Photonics, 2012: 841604.

[21] PENG Su. Absolute measurements of large mirrors[D]. The University of Arizona, 2008.

安其昌, 张景旭, 杨飞, 赵宏超. GSSM缩比模型子孔径拼接误差分析[J]. 光子学报, 2018, 47(1): 0112004. AN Qi-chang, ZHANG Jing-xu, YANG Fei, ZHAO Hong-chao. Giant Science Steering Mirror Prototype Sub-aperture Testing Error Analysis[J]. ACTA PHOTONICA SINICA, 2018, 47(1): 0112004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!